MIPI : UN MODELO DE PREDICCIÓN DEL ÍNDICE DE PRODUCCIÓN INDUSTRIAL BASADO EN VARIABLES DE OPINION

INFORME DE INVESTIGACIÓN

Alberto Melo Giraldo

Bogotá, Abril de 1986
ÍNDICE

1. **INTRODUCCION** ... 1

2. **LAS VARIABLES DE OPINION Y LA PREDICION DEL INDICE DE PRODUCCION INDUSTRIAL**
 2.1 Las Variables de Opinión .. 4
 2.2 Predicción del Indice de Producción Industrial con Base en Variables de Opinión ... 7
 2.3 Las Variables de Opinión en Modelos de Ecuaciones Simultáneas 14

3. **FUNDAMENTACION TEORICA DEL MODELO** 20
 3.1 Cuestiones Preliminares .. 20
 3.2 Elementos Keynesianos ... 24
 3.3 Costos, Precios y Ganancias ... 28
 3.4 El Papel de los Inventarios ... 30
 3.5 La Curva de Phillips con Expectativas 33

4. **ESTRUCTURA DEL MODELO** .. 35
 4.1 Los dos Bloques del Modelo .. 35
 4.2 Recursividad del Modelo .. 36
 4.3 Relaciones de Causalidad .. 38
 4.4 La Especificación Definitiva del Modelo 42
5. ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS
 5.1 Pruebas de Autocorrelación
 5.2 Corrección de la Autocorrelación
 5.3 Pruebas de Heteroscedasticidad
 5.4 Pruebas para la Detección de Multicolinealidad
 5.5 Interpretación de los Coeficientes

6. EL MIPI COMO HERRAMIENTA DE PREDICCIÓN
 6.1 Predicción al Interior de la Muestra
 6.2 Predicción por Fuera de la Muestra
 6.3 Conclusión

Apéndice 1
Apéndice 2
Apéndice 3
1. INTRODUCCION

El objeto de este trabajo es presentar el modelo de predicción de la desviación del Índice de Producción Industrial respecto de su tendencia (MIPI). El modelo está diseñado para ser utilizado como una herramienta para la prevención de los desarrollos del sector industrial de la economía en el corto plazo (de 3 a 5 meses). El MIPI es un modelo de ecuaciones simultáneas que contiene 14 variables endógenas, 17 variables exógenas y 17 variables rezagadas (para un total de 34 variables predeterminadas).

La contribución del MIPI al desarrollo de la investigación en el área de la prevención económica es doble: de un lado, es la primera vez que en Colombia se especifica y estima un modelo basado en las variables de opinión construidas a partir de las respuestas de los empresarios en las encuestas que mensualmente conduce FEDESARROLLO. De otra parte, se trata del primer intento conocido, a nivel internacional, de formular un modelo en que las variables de opinión juegan el papel central en la estructura del mismo.

En este documento se presentan los resultados de la estimación del MIPI mediante el método de mínimos cuadrados en dos etapas y se usa el modelo para la predicción de sus variables endógenas. Las conclusiones de los ejercicios de pre-
dicción permiten afirmar que el MIPI es un instrumento apropiado para pronosticar los desarrollos de corto plazo del sector industrial.

La estructura de este informe final de la investigación es la siguiente: en la segunda sección se discuten las características distintivas de las variables de opinión, así como la utilización que se ha hecho de ellas con propósitos de predicción del Índice de Producción Industrial y/o en el marco de modelos econométricos de ecuaciones simultáneas. La tercera sección presenta las concepciones teóricas generales que iluminan la especificación de las ecuaciones del modelo. La cuarta sección presenta la estructura general del modelo y discute las relaciones de recursividad y causalidad presentes en su interior. Esta sección discute también las modificaciones hechas a la especificación de las ecuaciones una vez concluida la etapa denominada "búsqueda de especificación" en el argot de los econométristas. La quinta sección empieza con una discusión de las pruebas de detección de autocorrelación, heteroscedasticidad y multicolinealidad aplicadas a las ecuaciones del modelo y procede, a continuación, a presentar los resultados de la estimación y a discutir la significación de las distintas variables explicativas en cada una de las ecuaciones. Finalmente, la sección sexta eva
lúa el desempeño del modelo en predicción, tanto al interior de la muestra como fuera de ella 1/.

1/ Se incluyen, además, tres apéndices. El primero de ellos explica las transformaciones operadas sobre los datos originales para desestacionalizar las variables y/o crear nuevas variables. El segundo presenta una lista de las variables usadas en el trabajo, con la notación que se le asigna a cada una de ellas. Se adicionan también los facsímiles de los cuestionarios A, B y C de la Encuesta de Opinión Empresarial de FEDESARROLLO para que el lector tenga a la mano la información acerca del contenido y la forma de las preguntas que constituyen la encuesta, así como las diversas alternativas de respuesta a las mismas. El tercer apéndice explica el contenido de cada uno de los listados de computador que se adjunta.
2. LAS VARIABLES DE OPINIÓN Y LA PREDICCIÓN DEL ÍNDICE DE PRODUCCIÓN INDUSTRIAL

Esta sección del trabajo tiene el triple propósito de introducir las características distintivas de las variables de opinión, de pasar revista a la literatura relacionada con los esfuerzos previos tendientes a predecir el Índice de Producción Industrial (IPI) por medio de modelos basados en variables del tipo mencionado y examinar los intentos de utilización de tales variables en modelos económicos de ecuaciones simultáneas.

2.11 Las Variables de Opinión

Las encuestas de opinión empresarial, que se conducen actualmente en alrededor de cuarenta países, consisten en cuestionarios mensuales escritos en los cuales se pide a los empresarios de las diversas ramas de la industria manufacturera (y, en muchos casos, también del comercio y de la construcción) establecer la dirección de cambio de ciertas variables comparadas con los valores en el mes (o trimestre) previo, así como también la dirección del cambio esperado en el siguiente mes (o trimestre) comparado con el presente. El número de respuestas posibles es normalmente 3 (en la mayoría de los casos: aumento, no cambio y disminución). No se pregunta
nada acerca de la magnitud exacta de las variaciones implicadas.

El objeto primordial de las encuestas es suministrar información detallada a intervalos regulares y cortos, sobre los cambios operados en el corto plazo en los distintos sectores de la economía. Los resultados se presentan en la forma de porcentajes de participantes en cada industria particular que reportan aumento, no cambio o disminución en una variable determinada. Por ende, para cada variable y cada mes (o trimestre) los resultados se pueden representar por un vector

\[x = (x_1, x_2, x_3) \]

donde \(x_1 \) es la fracción de empresas que reportan (o esperan) un aumento, \(x_2 \) las que reportan no cambio y \(x_3 \) las que reportan disminución. Con base en \(x_1 \) y \(x_3 \) se puede definir el llamado "balance" (o saldo de opinión) como la diferencia entre \(x_1 \) y \(x_3 \)

\[b = x_1 - x_3 \]

2/ El autor juzga que la traducción "balance" de la palabra inglesa balance es inapropiada y que una traducción más correcta sería "salo". Como se trata de variables de opinión una buena traducción sería "salo de opinión" que es equivalente a la acostumbrada en Francia ("solde d'opinion"). En este trabajo se utilizaron indistintamente las dos formas de traducción.
La construcción de X_1, X_2 y X_3 permite transformar las respuestas puramente cualitativas de los empresarios en datos que tienen una forma cuantitativa y a los cuales, por lo tanto, se pueden aplicar métodos cuantitativos. Las series de tiempo de X_1, X_2, X_3 y de los balances se pueden utilizar, entonces, como ingredientes en los más variados procedimientos estadísticos (regresiones, análisis factorial, análisis de varianza, etc.).

Es preciso advertir, sin embargo, de entrada, que la utilización de los saldos de opinión en modelos estadísticos, como el que nos proponemos especificar y estimar, contiene un defecto intrínseco y comporta un riesgo no desdeñable. El defecto consiste en que los saldos, por construcción, desconocen y no utilizan la información suministrada por la categoría de "no cambio", lo cual los hace inherentemente ineficientes 3/. El riesgo en cuestión es el de que, en algunos casos se puede presentar correlación púreca entre las series de tiempo de los balances de dos variables distintas cuando, en realidad, ellas son independientes entre sí. Koenig, Nerlove

3/ El punto fue señalado originalmente por Carlson y Parkin (1975).
y Oudiz (1981), por ejemplo, muestran que es fácil construir un ejemplo en el cual dos variables de opinión independientes, exhiben una perfecta correlación positiva entre sus balances a lo largo del tiempo. Es claro que cuando este es el caso los resultados de, por ejemplo, una regresión de la primera variable en función de la segunda lucirán mejor de lo que efectivamente deberían ser. Empero, tampoco sería prudente sobrestimar este riesgo y debe tenerse siempre presente que el mismo peligro se presenta en el caso de las series de tiempo de variables cuantitativas tradicionales.

2.2 Predicción del Índice de Producción Industrial con base en variables de opinión

Los primeros esfuerzos tendientes al aprovechamiento de la capacidad predictiva de las variables de opinión buscaron utilizar los datos brutos de las encuestas. Estas tentativas iniciales llevaron a la implementación de modalidades de previsión relativamente simples. Una vez fue posible gracias a la existencia de una longitud suficiente en las series de tiempo disponibles, investigar las variables de opinión desde el punto de vista de su utilidad como indicadores macroeconómicos, rápidamente se llegó a la con
clusión según la cual algunas de ellas están en capacidad de detectar anticipadamente los puntos de quiebre del ciclo económico. Los esfuerzos pioneros fueron realizados por Strigel (1962). Este autor desarrolló el denominado "indicador de sentimiento", enderezado a captar las apreciaciones sobre la situación presente y las expectativas de los empresarios y mostró cómo los puntos de quiebre de la curva de este indicador antecedían los puntos correspondientes de la curva de la producción industrial. El siguiente paso fue la introducción del indicador "Clima de los Negocios" por el propio Strigel en 1965, el cual demostró ser un notable indicador avanzado (o líder) de los puntos de quiebre del índice de producción industrial. Actualmente, este indicador se utiliza en muchos países, entre ellos Colombia, y la experiencia general ha demostrado que reacciona de una manera más sensible a las fluctuaciones cíclicas que, por ejemplo, los índices de difusión de las estadísticas oficiales de algunos países avanzados.

5/ El concepto de índice de difusión se encuentra explicado en Burns y Mitchell (1946).
La aplicación de los métodos econométricos a las variables de opinión empezó con Anderson et al. 6/. Según estos autores, los datos de las Encuestas de Opinión deberían ser comparados con las primeras diferencias de los números índice de la variable correspondiente. En consecuencia, ellos propusieron la siguiente ecuación para ser usada en predicción:

\[Y = a + b X_1 + c X_2 + u \] (1)

en la cual \(Y = \) cambio relativo en el índice \(I \), es decir,

\[Y_t = \frac{I_t - I_{t-1}}{I_{t-1}} \]

\(X_1 = \) fracción ponderada de firmas que reportan un incremento
\(X_2 = \) fracción ponderada de firmas que reportan una disminución
\(u = \) término de error aleatorio

Suponiendo \(b = c \), los autores arriban a una relación entre \(Y_t \) y el balance \(X_1 - X_3 \), tal que

\[Y = a + b X + u \] (2)

Anderson y sus socios también experimentaron con la relación de tipo curvilíneo:

\[y = a' + b' x + c x^2 + u' \quad (3) \]

Se corrieron regresiones de los tres tipos y se encontraron correlaciones del orden de 0.9.

Jochems y de Witt 7/ propusieron un modelo más general, en el cual el cambio relativo en el índice es aproximadamente proporcional al balance cuando éste es pequeño pero la relación deviene no lineal cuando el balance es grande en valor absoluto. La relación que de allí se desprende es:

\[y = \frac{\alpha X}{(1 - X^2)^\beta} + u \quad (4) \]

en la cual \(\alpha \) y \(\beta \) son parámetros a ser estimados mediante un procedimiento en dos etapas.

El trabajo de Leyland (1977) introdujo una mayor formalización en el tra-

7/ Cf. Jochems y de Witt (1959), citado por Theil y Jochems (1959).
-tamiento de las variables en cuestión al proponer que el valor de una va
riable cuantitativa tradicional se puede predecir por medio de la siguiente
ecuación:

\[Y_t = \frac{1}{r - q} \left(a_0 + a_1 B_t \right) \left(Y_{t-q} + Y_{t-q+1} + \ldots + Y_{t-r} \right) \]

donde

\(Y_t \) = valor previsto de \(Y \) correspondiente al período \(t \)

\(B_t = "balance" \) de la pregunta en la cual se inquiere acerca del valor
anticipado de \(Y \) en \(t \) (la pregunta se formula varios meses antes

\(\frac{Y_{t-q} + Y_{t-q+1} + \ldots + Y_{t-r}}{r - q} \)

un promedio móvil de \(Y \). El rango \((t-q, t-r) \) representa el período
respecto del cual se considera que los empresarios están comparando su pro
pia predicción, comparación con base en la cual establecen la tendencia
esperada.

La ecuación también arroja excelentes resultados cuando \(B_t \) es el balance
de preguntas cuyas respuestas constituyen variables estrechamente relacionadas con \(Y \). Por ejemplo, si \(Y \) es el índice de producción industrial, \(B \) puede ser el Clima de los Negocios o el flujo de nuevos pedidos.

Menendian \(^8\) aplicó el método de análisis de series de tiempo de Box y Jenkins para predecir el índice de la producción industrial francesa.

La forma particular que empleó fue la del método univariado con función de transferencia el cual permite el análisis simultáneo de varias series en función de varias variables explicativas. En una primera etapa, el método se aplicó al IPI tomado aisladamente. En una segunda etapa del procedimiento, el método se applica a la determinación simultánea de las variables derivadas de la encuesta sobre perspectivas (la cual se aplica a los dirigentes empresariales) y del IPI.

Otro método de predicción que ha dado lugar a una abundante literatura es el de la construcción de indicadores que buscan anticipar las tendencias futuras del IPI. En estos intentos se ha dado un lugar privilegiado a la técnica del análisis factorial \(^9\). Siguiendo la opinión de Piatier (1979),

\(^8\) Ver Menendian (1978), citado por A. Piatier (1979).

\(^9\) Aparentemente el trabajo pionero en esta línea es el de Kloek y Bannink (1961).

El propósito de la investigación de Liberatori y Pinca fue construir indicadores sintéticos de acuerdo con el método de las componentes principales. Los autores proponen dos tipos de indicadores, a saber, indicadores "generales" y un "indicador de utilización de la capacidad productiva".

En el primer grupo incluyen, y elaboran, un indicador ex-ante basado en una selección de las variables de opinión de carácter predictivo y dos indicadores ex-post basados el primero en una selección y el segundo en todo el universo de las variables de opinión relativas a los cambios efectivamente operados en el último período.

El indicador ex-ante tiene especial interés para los propósitos de este trabajo. Entre las variables de opinión predictivas se seleccionan las siguientes:

\[X_1 = \text{predicciones acerca de los pedidos y del comportamiento de la demanda en los próximos tres o cuatro meses.} \]

\[X_2 = \text{predicciones acerca del comportamiento de la producción en los} \]
tres o cuatro meses siguientes.

\[X_3 = \text{predicciones acerca del comportamiento de la economía en su conjunto en los tres o cuatro meses siguientes.} \]

Las variables \(X_1, X_2 \) y \(X_3 \) se normalizan y se hace un análisis de componentes principales y se calcula la serie de tiempo para el primer componente principal, la cual viene a constituir el indicador mismo. El indicador se comparó con el índice de producción industrial y resultó una correspondencia satisfactoria entre las tendencias de las dos series y una tendencia del indicador a anticipar el IPI.

2.3 Las Variables de Opinión en Modelos de Ecuaciones Simultáneas

Los esfuerzos tendientes a integrar las variables de opinión en modelos econométricos tuvieron su punto de partida en los trabajos de L. R. Klein (1964) para el National Bureau of Economic Research. Sin embargo, el primer modelo que le otorga un papel protagónico a las variables de opinión y, en especial, a las de carácter anticipatorio es el de Thomas y Friend (1971). Este modelo contiene 17 ecuaciones en las cuales las principales variables explicativas son las de carácter anticipatorio. El núcleo del modelo con-
siste en seis ecuaciones para los componentes principales de la demanda agregada de bienes finales. Los datos acerca de expectativas entran en la forma de funciones de realización 10/. Es importante resaltar que el modelo compite favorablemente, en la previsión del PIB, con el modelo Wharton y con el modelo OBE del Departamento de Comercio de los Estados Unidos cuando se trabaja con un horizonte de uno o dos trimestres. Para tres y cuatro trimestres hacia el futuro las previsiones son inferiores a las del modelo OBE aunque todavía son comparables a las generadas por el Wharton. Las relaciones anotadas son las mismas para la previsión del consumo, pero cuando de predecir la inversión se trata, el modelo de Thomas y Friend es superior a los otros dos, incluso en el horizonte de cuatro trimestres.

En un trabajo presentado a la décimosexta conferencia del CIRET, Smit (1983) informa acerca de la utilización de las variables de opinión en varios modelos econométricos 11/. Desafortunadamente no es posible consultar estos

10/ El concepto de función de realización fue desarrollado por Modigliani y Cohen (1961), a partir de un modelo general estructural del comportamiento de las empresas, en el cual las expectativas y las decisiones de los empresarios se incluyen como variables.

trabajos en nuestro país por lo cual no se presenta qui una reseña del ma-
nejo que hacen de las variables de opinión. Por su parte, Smit expresa
la opinión según la cual difícilmente podría decirse que exista consenso
acerca de la contribución de las variables mencionadas a la capacidad ex-
plicativa y predictiva de los modelos econométricos respectivos. El propio
Smit acomete una comparación de modelos de gasto de la economía de Afri-
ca del Sur que incluyen variables de opinión con modelos de la misma eco-
nomía que las excluyen. Cada uno de los modelos contiene siete ecuacio-
nes en las cuales las variables endógenas son las siete componentes depen-
dientes básicas del gasto macroeconómico 12/. Veinte variables de opinión
son utilizadas; todas en el papel de variables exógenas. Smit llega a las
siguientes conclusiones, las cuales guardan mucho interés para nuestros
propósitos:

i) Cuando las variables de opinión se utilizan en ecuaciones de regresión
múltiple del tipo "caja negra" 13/, ellas proporcionan un buen grado

12/ A saber, el consumo privado en bienes durables, el consumo privado en bienes
semidurables, el consumo privado en no durables, el consumo privado en ser-
vicios, la inversión fija privada no-agrícola, el cambio de inventarios en la in-
dustria y el comercio y las importaciones de bienes y servicios (distintos a fac-
tores).

13/ Se le da esta denominación a ecuaciones que no se basan en especificaciones
estrictas desde el punto de vista teórico pero que, sin embargo, exhiben buen
ajuste histórico.
de ajuste para los componentes dependientes del gasto.

ii) Los modelos de ecuaciones simultáneas en los cuales el acento cae sobre las variables de opinión no se comportan apreciablemente mejor o peor que los modelos tradicionales; de lo cual se puede inferir que un modelo que ponga el énfasis en las variables de opinión rezagadas puede ser útil para efectos de predicción en un horizonte de tiempo muy corto.

iii) Es difícil retener dos o más variables de opinión en cualquier ecuación de regresión en la cual también haya variables cuantitativas tradicionales debido a problemas de multicolinealidad. Esto da lugar a la sospecha de que una parte sustancial de las 110 series de tiempo de variables de opinión disponibles en África del Sur pueden incorporar similar información.

Smit añade que una de las líneas futuras de investigación debe ser la endogenización de las variables de encuesta, y la recolección de evidencia acerca del desempeño predictivo de modelos con variables de opinión endógenas.

Otro intento importante: de utilización de las variables de opinión en
modelos econométricos es la inclusión de cuatro de ellas como variables endógenas 14/ en el Modèle Économétrique Trimestriel pour la Conjoncture. Este es un modelo grande compuesto de 140 variables endógenas y 250 variables exógenas. A propósito de las variables de opinión los autores señalaron que

"era tentador usar esta masa de información particularmente rica, pero es claro que, a menos que limitáramos el funcionamiento del modelo a un período muy corto era necesario endogenizar las variables de opinión usadas (...) de otra manera, podríamos vernos confrontados con una predicción exógena lo cual sería extremadamente difícil".

A manera de conclusión de esta revisión de las tentativas de integrar las variables de opinión en modelos econométricos de ecuaciones simultáneas se puede afirmar que:

i) Tales variables han demostrado poseer una buena capacidad predictiva en modelos cuyas variables endógenas son cuantitativas

14/ Las cuatro variables son el margen disponible de capacidad, el estado de los inventarios, la situación de tesorería de las empresas y las expectativas de precio para el corto plazo. Ver Autor Colectivo (1982).
del tipo tradicional.

ii) Todos los modelos –con la única excepción del METRIC– han utilizado las variables de opinión como variables exógenas.

iii) No se conoce, hasta el momento, ningún modelo de ecuaciones simultáneas en el cual las variables de opinión constituya una parte sustancial del conjunto de variables endógenas. Por esta razón, se puede afirmar que el tipo de modelo objeto de este trabajo prácticamente carece de antecedentes.
3. **FUNDAMENTACION TEORICA DEL MODELO**

3.1 **Cuestiones Preliminares**

Un modelo econométrico que busca prever el desarrollo a corto plazo del sector industrial debe basarse en un marco teórico apropiado que permita la comprensión de su objeto de estudio. Esta consideración es tanto más válida si se tiene la pretensión de que el modelo en cuestión sea uno de tipo estructural. Esta parte del trabajo busca, precisamente, hacer explícitas las hipótesis teóricas en las cuales se basa la especificación del modelo.

La primera cuestión que se requiere absolver es la de por qué se ha decidido especificar un modelo de ecuaciones simultáneas cuando nos hemos podido limitar a un modelo de una sola ecuación de regresión para predecir el Índice de Producción Industrial. La opción a favor del modelo de ecuaciones simultáneas se basa, en última instancia, en el hecho de que la Encuesta de Opinión es un ejemplo típico, de la vida real, de una
ción definida con los movimientos cíclicos de la economía asumiendo en algunos casos (inventarios, flujo de pedidos, pedidos por atender, precios de venta, salarios, costos, etc.) un papel de primer orden.

La consecuencia ineludible de estas consideraciones es que la especificación del modelo debe contar con un fundamento teórico sólido en aquellas elaboraciones de las cuales sea razonable suponer —o que los escasos estudios empíricos hayan demostrado— que contribuyen a la comprensión de las características generales y específicas que asume el fenómeno en la economía colombiana.

La complejidad misma del fenómeno del ciclo y la diversidad de teorías acerca del mismo, así como la falta de consenso respecto de la validez de ellas entre los economistas, permiten arriesgar la hipótesis según la cual es bien probable que ninguna de las teorías tomadas por separado, explique satisfactoriamente —por no decir completamente— el curso de las fluctuaciones económicas. Por esta razón, se ha juzgado prudente integrar elementos de diversas teorías y someterlos a la prueba empírica que brinda un modelo econométrico como el que se ha propuesto.

El presente ejercicio de modelaje se inspira en elementos tomados de
situación en la cual la toma de decisión, por parte de los empresarios, acerca de cómo responder a una pregunta determinada depende de, e influye sobre, las respuestas a las otras preguntas. Es decir, se trata de un caso clásico —de libro de texto, se podría decir— de determinación simultánea de un grupo de variables que, de otro lado, son influenciadas a su vez, por los desarrollos registrados en las estadísticas tradicionales, a la par que influyen sobre ellos.

La segunda consideración pertinente parte de reconocer la estrecha conexión existente entre la actividad industrial y el ciclo económico general. Es bien sabido que el ciclo industrial está en el corazón de las fluctuaciones económicas globales, de tal manera que no se puede estudiar el primero sin, al mismo tiempo, referirse a las segundas.

En el caso de las variables bajo consideración, tanto las de la Encuesta de Opinión Empresarial de Fedesarrollo como las de la Mensual Manufacturera del DANE, hay que decir que su relación intrínseca con las alternativas del ciclo económico debería considerarse más allá de toda duda. No sólo es verdad que las propias alternativas del ciclo se pueden medir por el curso seguido por el Índice de Producción Industrial, sino que, además, las variables en cuestión guardan una rela
varías fuentes, a saber: 1) la teoría Keynesiana; 2) un grupo de formulaciones que ponen de relieve el papel de los cambios en los precios, costos y ganancias; 3) un conjunto de elaboraciones que destacan el papel de los inventarios y 4) una versión modificada de la hipótesis de Phelps (1967) y Friedman (1968) acerca de la dinámica de los precios y los salarios en el ciclo 15/

En relación con la adopción de los mencionados puntos de referencia teóricos algunos comentarios parecen indicados. En primer lugar, nótese que se prefiere aquellas teorías del ciclo que ponen de relieve los factores endógenos, es decir, que se concentran sobre la dinámica interna del sistema económico en general y del sector industrial en

15/ Es preciso advertir que la naturaleza del modelo objeto de este informe imprime algunas limitaciones a la labor de integrar ciertos elementos que se juzgan pertinentes para el estudio del ciclo en Colombia. En particular, existe una clase de modelos, cuyos pioneros fueron Kalecki (1936), Samuelson (1939) y Hicks (1950), los cuales se basan en una combinación del mecanismo del acelerador de la inversión con el multiplicador del consumo. Estos modelos pueden contribuir de una manera importante a la comprensión del ciclo en países como el nuestro. El hecho de que el modelo bajo consideración no tenga el carácter de modelo macroeconómico (que, como es bien sabido, es el tipo de modelo que da cabida, de una manera natural, a las funciones de inversión y consumo) hace imposible tomar ventaja, de una manera explícita de las formulaciones aludidas. Sin embargo, es impor...
particular. Por ende, se considera que el papel de las fuerzas exógenas es secundario, aunque se reconoce que éstas actúan continuamente y que tienen la capacidad de acelerar, retardar, interrumpir o revertir los movimientos endógenos. En segundo lugar, y como consecuencia de lo anterior, las variables monetarias y financieras no tienen un papel protagónico en el modelo. Esto tiene que ver, además con el hecho de que el principal eslabón en el mecanismo de transmisión de los impulsos monetarios y financieros hacia el sector real, a saber, la inversión, no encuentra cabida explícita en el presente ejercicio debido al alcance del mismo.

3.2 Elementos Keynesianos

Hay dos elementos de la tradición Keynesiana que juegan un papel importante en la especificación del modelo. El primero de ellos se relaciona con el carácter decisivo de la demanda efectiva en la determinación de la actividad del sector industrial. Esta consideración general, que, cuando se refiere a la actividad agregada de la economía, hace parte de los modelos convencionales simples de ingreso y gasto, ex-

...viene

15/ tante advertir que la teoría económica que subyace el diseño mismo de las encuestas de opinión se inspira en el tipo de modelos aquí mencionados; ver Strigel (1977), p. 53.
puestos en los libros de texto más elementales, adquiere un contenido muy específico cuando se trae a colación el carácter de mercado de precio fijo que exhibe el de los productos del sector industrial colombiano. En efecto, como lo señala Londoño (1985), en Colombia coexiste ten sectores con diferentes respuestas a los excesos de demanda en el corto plazo. Debido a la inelasticidad de la oferta y a una cierta similitud con los mercados de subasta de la teoría Walrasiana, el sector de producción de alimentos puede caracterizarse como un mercado de precio flexible. De otro lado, por su carácter oligopólico y la tendencia estructural hacia la subutilización de la capacidad instalada, entre otros factores, el sector industrial encuadra dentro de la categoría de mercado de precio fijo. La característica distintiva del primer tipo de mercados consiste en que el mecanismo de ajuste ante desequilibrios entre la oferta y la demanda descansa sobre el cambio en los precios. El mercado de precio fijo, por contraste, opera con un mecanismo de ajuste basado en el cambio de la cantidad producida; lo cual equivale a decir que el nivel de actividad, en este tipo de mercado, está determinado por la demanda.

La materialización de estos criterios al nivel de la especificación del
modelo se manifiesta en las ecuaciones 2, 8 y 12 las cuales corresponden, respectivamente, al incremento en la producción, las expectativas de producción y la desviación del Índice de Producción Industrial del DANE respecto de su tendencia. En dichas ecuaciones variables de demanda tales como el flujo de pedidos en el último mes (ver ecuaciones 2, 8 y 12), las expectativas de demanda de los empresarios (ver ecuación 8), y el crecimiento en el gasto exógeno macroeconómico desempeñan un papel importante.

El segundo elemento de inspiración Keynesiana presente en el modelo evoca las elaboraciones del propio Keynes acerca del papel de las expectativas. Recuérdese que, de acuerdo con este autor:

"... el comportamiento de cada empresa individual al decidir el nivel de producción diario estará determinado por las expectativas de corto plazo —expectativas en cuanto al costo de producir en las varias escalas de producción posibles y expectativas en cuanto a los ingresos provenientes de las ventas de esta producción". (Keynes, 1936, p. 47. El subrayado es del autor. La traducción es nuestra).

Una de las virtudes cruciales de las encuestas de opinión empresarial yace precisamente en que su diseño mismo está iluminado por una concepción teórica en la cual las expectativas asumen un papel de pri-
mera magnitud. El trabajo de los pioneros en la elaboración de en-
cuestas de opinión estuvo estrechamente conectado con las teorías
de la Escuela de Estocolmo, la cual enfatizó el papel de las expec-
tativas en el ciclo económico. Esta corriente de pensamiento hace
parte de una tradición teórica que ha insistido en la influencia de los
factores psicológicos sobre el curso del ciclo. A ella pertenecen, apar-

té de Keynes, economistas como Pigou, Jöhr, Katona y Schmolders

El papel decisivo de las expectativas ya está, pues, incorporado en el
diseño mismo de la encuesta de FEDESARROLLO, como lo comprueba
el que 5 de las 13 preguntas permanentes buscan calibrar las expecta-
tivas de los empresarios. La especificación del MIPI incluye la va-

merable relativa a una de aquellas preguntas como variable endógena.

Además, dos de las nueve ecuaciones que forman el modelo inclu-

yen variables explicativas de carácter expectacional.

16/ Para una discusión de las bases teóricas de las encuestas véase Strigel (1981),

pp. 42-44, 176-179.

17/ Las referencias pertinentes —citadas en Strigel (1981) y Vogler (1977)— son:
Pigou (1927), Katona (1960), Jöhr (1972) y Schmolders (s. f.).
3.3 Costos, Precios y Ganancias

Otra fuente de inspiración para la especificación del modelo es el gru-
po de formulaciones teóricas que pone de relieve el papel de los cam-
bios en costos, precios de venta y, por ende, de las ganancias en la
dinámica del ciclo. En una economía capitalista donde la búsqueda
de la ganancia es el motor de la actividad empresarial, el descenso en
los ganancias (actuales o esperadas) en las últimas fases de una expan-
sión lleva a los empresarios a reducir la producción y el empleo, es
decir, a dar origen a la recesión. Igualmente, la perspectiva de in-
cremento en las ganancias cuando los costos caen en relación con los
precios estimula a los empresarios a aumentar la producción y a contri-
buir, de esta manera, a la expansión. Se tuvo conciencia de la vali-
dez de estas relaciones desde la más temprana época de desarrollo de
la ciencia económica. Pero entre los tratadistas del ciclo económico
es, tal vez, Mitchell (1913) quien de una manera más enfática identi-
ficó como tema central la relación de dependencia entre las fluctuacio-
tes de la actividad económica y las perspectivas de beneficios así co-
mo la influencia de los precios y los costos sobre los ingresos y gastos
de las empresas 18/. Así Mitchell escribió:

18/ Para una síntesis de los puntos de vista de Mitchell, ver Zamowitz (1975).
"Las propias condiciones que hacen rentables los negocios, devienen, gradualmente, condiciones que amenazan con reducir las ganancias. Cuando el incremento en la actividad, al principio una causa y más tarde tanto una causa como una consecuencia de las ganancias crecientes, presiona sobre la capacidad productiva del equipo industrial existente, el descenso inicial de costos suplementarios por unidad de producto se detiene. Entre tanto, la expectativa de hacer ganancias satisfactorias induce la competencia entre empresas por las materias primas, el trabajo y los fondos de préstamo, y hace subir los precios. Al mismo tiempo, las piezas menos productivas del equipo industrial existente se vuelven a utilizar, la eficiencia del trabajo declina, y el derroche en gastos de gerencia aumenta. Así, los costos se hacen más pesados. Después de que estos procesos han proseguido con efectos acumulativos por un cierto periodo, llega a ser difícil aumentar los precios de venta lo suficientemente rápido como para evitar la reducción de ganancias debido a la influencia corrosiva de los costos. (Mitchell, 1941, p. 61, citado por Klein y Moore, 1981. La traducción es nuestra).

La especificación del modelo integra estas consideraciones ligándolas con la variable clave en la determinación del estado de la psicología de los empresarios en un momento determinado, a saber, el Clima de los Negocios. Se postula que las tendencias presentes los costos de producción, medidas por las variables correspondiente, explican, en parte, la apreciación sub-
¡etiva de los empresarios acerca de la situación económica presente y las expectativas que se forman respecto de la situación económica en los seis meses siguientes.

3.4 El papel de los Inventarios

Como se señaló arriba, una tercera vertiente teórica que ha orientado el presente modelo ha sido la relativa a las formulaciones sobre las causas y consecuencias de las fluctuaciones en inventarios. El destacado economista norteamericano Alan S. Blinder (1981 a, 1981 b) ha enfatizado la "importancia abrumadora" de los movimientos de los inventarios en el ciclo económico. Ha llamado la atención, además, sobre el hecho que, con relación a su significación, la inversión en inventarios es el aspecto menos investigado de la actividad económica.

La hipótesis más influyente acerca del comportamiento de los inventarios fue desarrollada por Metzler (1947), en el marco de los modelos de multiplicador-acelerador. En ella, el nivel deseado de
las existencias de productos terminados varía en función de las ventas anticipadas, las cuales, a su vez, reflejan las ventas observadas en el pasado reciente. Un alza inicial en el nivel de la demanda agregada (en ítems distintos a inventarios) presiona sobre los inventarios existentes y tiende a agotarlos, frente a lo cual las firmas tratan de incrementarlos para llegar al nivel "normal" deseado. Pero la inversión en inventarios tiene el efecto de retroalimentación de elevar los ingresos y, por lo tanto, el consumo, lo cual iride uno nueva disminución de los inventarios. Esta reducción causa nuevos y reiterados aumentos en inventarios, producción y ventas. Empero, en algún momento, en el curso de la expansión, las tasas de crecimiento de las ventas y, por ende, también las de los inventarios empiezan a descender, lo cual lleva, tarde o temprano, a que caigan el ingreso y el consumo y a una reducción en los niveles deseados de inventarios. De nuevo, los esfuerzos tendientes a salir de los inventarios indeseados conducen a una caída mayor del ingreso y el consumo. Eventualmente, sin embargo, la tasa de descenso de las ventas empieza a disminuir e incrementos en el ingreso y el consumo inician un nuevo ciclo.
La posición deseada de inventarios tiene también un lugar central en el llamado "modelo de Modigliani" 19/. Este modelo y el de Metzler se han utilizado como las fuentes principales para la elaboración de hipótesis acerca de la inversión en inventarios. Con base en ellos se desarrolló el modelo que le asigna a los inventarios el papel de contribuir a suavizar el proceso de producción a lo largo del tiempo y servir de amortiguadores en el evento de variaciones bruscas en las ventas 20/. De acuerdo con Blinder (1981 b), este modelo es el único que ha proporcionado un fundamento microeconómico para una cantidad sustancial de trabajo empírico.

De lo anterior se desprende que uno de los indicadores claves que sirven de punto de referencia a los empresarios en la toma de decisiones es el estado de los inventarios. En consecuencia, la apreciación que los empresarios tienen sobre los mismos se utiliza como

20/ A este modelo se le acostumbra denominar Modelo de Suavización de la Producción y Stock Amortiguador.
variable explicativa en las ecuaciones para el incremento en la producción, el Clima de los Negocios, el cambio en el nivel de pedidos, el nivel de pedidos mismo, el incremento en los precios de venta y las expectativas de producción.

3.5 La Curva de Phillips con Expectativas

Una versión modificada de la llamada "curva de Phillips aumentada con expectativas", constituye otra de las canteras de las cuales se ha extraído material para la especificación del modelo. Como es bien sabido, la formulación original de Phelps y Friedman está en estrecha conexión con la Hipótesis de la Tasa Natural de Desempleo (HTND), la cual establece que un proceso inflacionario que ha durado por algún tiempo significativo, genera expectativas favorables a su persistencia, de tal manera que los cambios en el nivel de precios correctamente anticipados causan cambios de los salarios en la misma proporción y, por lo tanto, no pueden causar desviaciones de la tasa de desempleo respecto de la tasa de desempleo natural. Sólo la inflación no anticipada puede causar tales desviaciones. Como la igualdad entre la tasa de inflación esperada y la tasa de infla-
ción efectiva es una condición de equilibrio no puede existir, entonces, en el largo plazo, una relación de "toma y dame" (tradeoff) entre inflación y desempleo.

La ecuación de la curva de Phillips aumentada con expectativas, para el período t, viene dada por:

$$W_t = f(U_t) + p^e_t$$

donde

W = tasa de cambio del salario nominal

U = tasa de desempleo

p^e = tasa de inflación esperada

Este informe comparte el punto de vista de Tobin (1975) según el cual la utilización de una curva de Phillips aumentada con expectativas (bajo la condición de que se desplace lentamente), no implica aceptación de la HTND. En esta no aceptación de la HTND estriba la primera modificación que se hace a la hipótesis de Phelps y Friedman. La segunda consiste en incluir la tasa de crecimiento del empleo en vez de la tasa de desempleo para arribar a la ecuación 14 del modelo.
4. **ESTRUCTURA DEL MODELO**

Tres rasgos fundamentales caracterizan la estructura del modelo. El primero de ellos es la existencia de dos bloques definidos, el segundo es la relación básica de recursividad entre ellos y el tercero la conexión particular entre las variables exógenas y las endógenas de los dos bloques. A continuación se examinan cada uno de estos rasgos.

4.1 **Los dos bloques del modelo**

El modelo completo resulta de la articulación de dos bloques, a saber, el constituido por las ecuaciones 1 a 11 y el compuesto por las ecuaciones 12 a 14. El primer bloque contiene las ecuaciones para las variables endógenas de opinión y el segundo aquellas para las variables de la encuesta mensual manufacturera del DANE.

El bloque de las variables de opinión incluye, en el papel de variables endógenas, todas aquellas que se derivan de las preguntas realizadas todos los meses en la Encuesta de Opinión Empresarial para el sector industrial, con la única excepción de la pregunta que se relaciona con las expecta-
tivas de exportación21/. Las respuestas a las preguntas acerca de la situación económica actual y la situación económica esperada a seis meses vista se combinan en la variable clima de los negocios22/.

4.2 Recursividad del modelo

Siguiendo a Theil (1971), se dice que un sistema de ecuaciones simultáneas es recursivo por bloques cuando la matriz de los coeficientes de las variables endógenas es triangular por bloques y la matriz de varianzas y covarianzas de los errores es diagonal por bloques. Si se supone que la última condición se cumple para el MIPI, sólo restaría examinar el cumplimiento de la primera condición para ver si este modelo es recursivo por bloques. Esto requeriría:

1) que ninguna de las variables endógenas (contemporáneas) del primer bloque que apareciera como variable explicativa en las ecuaciones del segundo bloque y
2) que ninguna de las variables endógenas (contemporáneas)

21/ Pregunta No. 10 del cuestionario mensual de FEDESARROLLO.

22/ El clima de los negocios en el mes t se calcula como el promedio geométrico de los saldos de opinión correspondientes a las respuestas a las preguntas No. 1 y No. 11 de la encuesta de FEDESARROLLO.
del segundo bloque apareciera como variable explicativa en las ecuaciones del primer bloque.

El examen del modelo señala que esta última condición no se cumple, pero sólo porque una de las variables endógenas de opinión (DPED) entra en las ecuaciones del segundo bloque y porque la variable DS del segundo bloque entra como variable explicativa en dos ecuaciones del primer bloque. El sistema, por lo tanto, se aproxima a la recursividad por bloques y es esto lo que permite afirmar que, si se exceptúan las aludidas variables, existe una recursividad básica.

Si, de otro lado, se tienen en cuenta todas las variables de un bloque que entran como variables explicativas en el otro bloque (ya sea como variables contemporáneas o como variables rezagadas) se puede apreciar que cinco variables distintas del primer bloque aparecen como explicativas en el segundo, mientras que sólo una del segundo cumple tal papel en el primero. 23/ Añádase a esta circunstancia el hecho de que en la ecuación

23/ Si la cuenta se hace considerando las variables rezagadas como variables distintas, que tienen existencia por derecho propio, las cifras son siete y dos, respectivamente.
clave del sistema -aquella para la desviación del Índice de Producción Industrial respecto de su tendencia- cinco de las siete variables explicativas son variables de opinión, para que parezca apropiado concluir que la dirección de la recursividad aproximada que existe entre los dos bloques va del primero hacia el segundo.

4.3 **Relaciones de Causalidad**

Como en todo modelo econométrico de ecuaciones simultáneas en éste se pueden distinguir dos tipos de relaciones de determinación (o causalidad): de una parte aquellas que conectan las variables exógenas con las variables endógenas del sistema; de otro lado, aquellas de determinación mutua y simultánea de las variables endógenas entre sí.

Como bien se sabe, las variables exógenas son determinadas externamente al modelo, de una manera que es independiente del proceso descrito por las ecuaciones del sistema. Ellas, a su vez, contribuyen a determinar el curso seguido por las variables endógenas. Lo que interesa destacar, por tratarse de un rasgo peculiar del MIPI es el tipo particular de variables que en él desempeñan el papel de exógenas. Si se pone fuera de consideración la variable de opinión "planes de incremento en el empleo por
parte de las empresas" (DNESP), las restantes exógenas caen dentro de tres clases, a saber:

i) Variables que miden la evolución de la parte exógena de la demanda agregada. Este grupo contiene dos variables: el nivel de gasto exógeno en el mes t (GX) y el incremento en el gasto exógeno en el mismo mes (DGX). Como es ampliamente conocido, la inclusión de este tipo de variables es un rasgo común de los modelos macroeconómicos.

ii) Variables que miden el nivel o la evolución de los precios y costos. Esta clase incluye la variable sustituta para la tasa de ganancia (PRXGAN) que es, simplemente una relación entre la tasa de crecimiento del Indice de Precios al por Mayor para bienes del sector industrial y la tasa de crecimiento del salario nominal. Incluye también la tasa de inflación esperada (que es, a su vez, una función de la tasa de inflación corriente y de la registrada en el último trimestre) y la variable de opinión "tendencia en los costos de producción en los últimos tres meses" (DCP). Es apropiado considerar las variables de precio mencionadas como exógenas por cuanto, si bien se debe reconocer la capacidad de la industria de influir sobre los precios, se de
be enfatizar cómo, en gran medida, las variaciones de precio respon
den a la evolución de los "precios básicos" de la economía, los cua
les son externos al sector industrial. Por lo demás, la evolución de uno de
los precios básicos alcanza a ser captada, así sea de manera imperfec
ta, por la tasa de inflación esperada y por la tendencia en los costos
de producción. En efecto, la tasa de inflación esperada depende de
la tasa de inflación realizada y esta, a su vez, depende, de una ma
nera importante, de la evolución del precio de los alimentos. En
cuanto al otro precio básico, el precio de las materias primas importa
das, es razonable suponer que la opinión de los empresarios sobre la
tendencia en los costos de producción debe reflejar la tendencia re-
ciente en el precio de dichos productos.

iii) El tercer conjunto de variables exógenas lo integran dos variables que
miden las condiciones de la oferta. Ellas son la estimación hecha por
los propios empresarios de su capacidad instalada, los cuellos de bo-
tella (o restricciones enfrentadas) del lado de la oferta y los cuellos
de botellas totales (incluyendo la falta percibida de demanda). Este
es un rasgo peculiar del MIPI cuya importancia debe resaltarse. Su
interés estriba en que la integración de variables de este tipo es una
contribución a la solución de unas de las mayores dificultades enfrentadas por los modelos econométricos —y, más generalmente, por la macroeconomía como disciplina teórica—, cual es el énfasis, juzgado excesivo por algunos, en el lado de la demanda y la correlativa debilidad en el modelaje de las relaciones de oferta \(^{24}\). El MIPI de muestra, por ende, que un rasgo novedoso de los modelos basados en variables de opinión es la potencialidad que ofrecen de abrir una vía para la exploración de las condiciones de producción de las firmas.

Conclusión

Retornando a la consideración de la estructura de conjunto del modelo se puede apreciar un encadenamiento de tipo dinámico que parte de las variables exógenas de precio, oferta y demanda que actúan sobre ambos bloques del sistema, continua con la determinación de las variables de opinión, que constituyen el primero de los dos bloques y concluye con la determinación de las variables del segundo bloque. La ecuación que condensa este encadenamiento de una manera ejem-

\(^{24}\) Sobre este tópico, consúltense las lúcidas consideraciones de Klein (1980, 1983).
plar es la correspondiente a la desviación del Índice de Producción Industrial respecto de su tendencia. En ella el valor de la variable endógena viene determinado básicamente por los valores rezagados de un conjunto de variables del primer bloque y por la variable exógena rezagada DGX.

4.4 La Especificación Definitiva del Modelo

En el Informe de Avance No. 3 de esta investigación se presentó una propuesta de especificación resultante de la aplicación de un conjunto de hipótesis teóricas y de observaciones empíricas (en otros países) a la construcción de un modelo de predicción para el Índice de Producción Industrial. En el Informe de Avance No. 5 se explicó la manera en que las distintas hipótesis teóricas se integraban en la especificación particular de las diversas ecuaciones del sistema. Posteriormente a estos informes se entró de lleno en el proceso de "búsqueda de especificación",

25/ Ver Informe Mensual No. 3 sobre el Desarrollo del Estudio "Monitoría del Sector Real", Fedesarrollo, (1985 c).

26/ Ver Melo (1986).
que, como es bien sabido, es el proceso práctico-empírico que se orienta a determinar el conjunto de variables explicativas en cada ecuación que conduce a darle a ésta el más alto poder explicativo y/o predictivo. Normalmente, la etapa de búsqueda de especificación entraña una primera prueba de las hipótesis teóricas que iluminan la construcción de un modelo particular y puede conducir a modificaciones más o menos importantes en los conjuntos de variables explicativas y en las hipótesis avanzadas inicialmente.

A la manera en que el proceso de re-especificación condujo a algunos cambios en las distintas ecuaciones del sistema, se examinará a continuación, tomando ecuación por ecuación:

Ecuación No. 1 (CLI)

Ya desde la primera ronda de estimación del modelo 27/ se pudo apreciar que la ecuación del modelo base (Informe No. 3) para el Clima de los Negocios conducía a un ajuste bastante pobre \(R^2 = 0.46 \). En el proceso de re-especificación se decidió llevar a cabo los siguientes

27/ Ver Melo (1986), p. 56.
cambios respecto del modelo base:

i) Se excluyó DP y se lo reemplazó por una variable sustitutiva de la evolución de las ganancias (PRXGAN). Los detalles de la construcción de esta variable se explican en el apéndice. Se buscaba con ello captar de una manera más explícita el papel del estado de las ganancias en la apreciación de los empresarios acerca de la atmósfera de los negocios.

ii) Se eliminó la demanda esperada (DEMESP). En su lugar se incluyó el flujo de pedidos en el mes previo (DPEDₜ₋₁) que es un magnífico indicador de la tendencia de la demanda. El cambio se hizo con la esperanza de que la combinación de la intensidad de la demanda presente tal como es apreciada por los empresarios (DEMₜ) y la demanda reciente (medida por DPEDₜ₋₁) contenga toda la información que determina las expectativas de demanda de los empresarios. Se esperaba también reducir la alta colinealidad entre DEM y DEMESP.

iii) Se eliminó también la aceleración esperada de los precios en razón de dos consideraciones: Primero, en un número de rondas de prueba con varios conjuntos de variables explicativas 28/ esta varía...
ble resultó consistentemente no significativa. Segundo, se tiene la sospecha, más o menos firme, de que esta variable de opinión mide planes de alza en los precios de venta en un contexto en el cual las empresas fijan los precios y no propiamente las expectativas de alzas en dichos precios determinadas por desarrollos futuros (previstos) en las fuerzas de mercado y/o en la dinámica de la inflación. Si esta sospecha tiene fundamento no debería esperarse que los planes de incrementar el precio de venta del producto (que, por otra parte, deberían exhibir cierto comportamiento estacional) tengan una influencia importante sobre el clima. El hecho es que empresas que fijan los precios y que programan las alzas en una cierta época del año no van a experimentar una sensación de mejora en la situación económica por el sólo hecho de que dicha época se avecine.

iv) Se consideró la hipótesis según la cual el nivel de pedidos por atender debe guardar una relación directa con el Clima, puesto que es razonable suponer que cuando este nivel es alto los empresarios hagan una evaluación optimista de la situación económica presente y esperada. Experimentando con PAT_t y PAT_{t-1} como variables explicativas se encontraba, una y otra vez, que el signo del coefi-
ciente de PAT\textsubscript{t} resultaba negativo y no significativo mientras que el de PAT\textsubscript{t-1} resultaba positivo y cercano a ser significativo. La explicación puede residir en la existencia de colinealidad con DEM. De todas maneras se decidió incluir únicamente PAT\textsubscript{t-1}, en la esperanza de que el primer rezago contenga la influencia separada de la variable en cuestión.

v) Se supuso que una producción en aumento debe estar asociada normalmente con una percepción positiva del Clima de los Negocios por parte de los empresarios y por esta razón se incluyó DQ como variable explicativa.

vi) Consideraciones similares a las presentadas en el punto (iv) a propósito de PAT\textsubscript{t-1} son aplicables a DPE\textsubscript{t-1} y explican la inclusión de esta variable independiente.

vii) Se juzgó que debe existir una asociación positiva entre el nivel de los inventarios y el Clima, de tal manera que cuando los empresarios piensen que los primeros son demasiado pequeños es porque están enfrentando una demanda por encima de la normal, caso en el cual tenderán a manifestarse optimistas.
Ecuación No. 2 (DQ)

Se realizaron los siguientes cambios:

i) Después de experimentar con los rezagos tercero y cuarto de QESP, se decidió eliminar esta variable en razón de que resultó consistente y no significativa. La explicación puede estar en la existencia de colinealidad con el tercer rezago del Clima.

ii) Solamente se retuvo el primer rezago de INV. Los demás resultaban ser no significativos. Por la misma razón se eliminó el primer rezago de DPED.

iii) Se adicionó el incremento en el gasto exógeno cinco meses atrás por considerar que un incremento en el gasto exógeno en t debe reflejarse en un incremento en la producción algunos meses más adelante.

Ecuación No. 3 (INV)

Los cambios fueron los siguientes:

i) Se eliminó DQ por cuanto repetidamente resultó no significativa.

ii) Se eliminó el costo de oportunidad de mantener inventarios por con...
siderar que si bien es una variable fundamental en la toma de decisiones de las empresas en cuanto al nivel de inventarios deseado, no es tan importante cuando de pasar un juicio sobre los inventarios efectivamente existentes se trata. Además, tampoco resultó significativa en las rondas de prueba.

iii) Se utiliza el flujo de pedidos en el último período (DPEDₜ₋₁) como un indicador de la demanda esperada. La sustitución fue forzada por el hecho de que DEMESP apareció insistentemente no significativa.

Ecuación No. 4 (DPED)

Se llevaron a cabo los siguientes cambios:

i) Se excluyeron DEMₜ₋₁ y DGXₜ₋₁, cuyos coeficientes resultaron no significativos.

ii) En vez de DGXₜ₋₂ se usó GXₜ₋₂ como variable explicativa en razón de que el ajuste mejoraba.

iii) Se adicionó CLIₜ₋₁ como variable explicativa. La hipótesis que justifica esta inclusión sostiene que al presentarse una mejora en el
Clima de los Negocios los empresarios se verán estimulados a incrementar la demanda de insumos producidos por otras industrias, lo cual debe conducir a un incremento en los pedidos.

iv) En el proceso de experimentación se encontró que DQ_t exhibe una alta correlación con $DPED_t$. Si bien la explicación puede yacer en la existencia de correlación espuria, un razonamiento como el que viene a continuación, no parece desacabellado. Se podría argumentar no sólo que al mismo tiempo que está creciendo la producción están creciendo los pedidos, en un contexto de incremento generalizado en la demanda agregada, sino que todo aumento en la producción debe traer como consecuencia un aumento en los pedidos en aquellas industrias productoras de bienes intermedios y de capital. Como se puede apreciar el argumento es esencialmente el mismo del numeral anterior.

Ecuación No. 5 (DPAT)

No hay cambios respecto de la especificación inicial.

Ecuación No. 6 (PAT)

Los cambios realizados fueron los siguientes:
i) Se eliminó DQ en razón de ser no significativa. La razón aparente de este resultado reside en la colinealidad con DPED que, como arriba se señaló, parece ser fuerte.

ii) Se eliminó \(\text{PAT}_{t-1} \) debido a que en las rondas de prueba resultó ser no significativa.

Ecuación No. 7 (DP)

Esta ecuación sufrió importantes modificaciones:

i) Se eliminaron la demanda actual y la demanda esperada como variables explicativas. Se conjetura que toda la información que elías proporcionan se halla consignada en \(\text{DEM}_{t-1} \). Por otro lado, como la pregunta que se hace a los empresarios se refiere al alza de precios durante el período \((t-1, t) \) parece razonable relacionar este incremento con la apreciación que los empresarios tenían de la intensidad de la demanda en el instante \(t-1 \).

ii) DCP resultó no significativa y se eliminó.

iii) En el orden de ideas desarrollado en el numeral (i) se supuso que
El coeficiente de DEM, que es significativo, tiene un signo incorrecto. Los coeficientes de INV_t, CBO_t y DPD_t son significativos pero los signos son correctos sólo en los dos últimos casos.

Ecuación No. 7: Incremento en los precios de venta

\[
DP_t = 16.60047 - 0.1879875 \text{DEM}_{t-1} - 0.023874 \text{AEP}_{t-3} \\
\quad (4.052989) \quad (-2.507188) \quad (0.6803352)
\]

\[
- 0.4021811 \text{PAT}_{t-1} + 0.6940544 \text{INV}_{t-1} + 10.56818 \text{DS}_t \\
\quad (-4.138699) \quad (5.959690) \quad (0.2627221)
\]

\[
- 7.755741 \text{DS}_{t-1} + 0.2446846 \text{DP}_{t-1} + 0.1431209 \text{DP}_{t-2} \\
\quad (-0.1918217) \quad (1.035460) \quad (0.7406654)
\]

\[
- 0.6345289 \text{DP}_{t-3} \\
\quad (-4.310558)
\]

\[
\bar{R}^2 = 0.852163
\]

\[
D-W = 1.682786
\]

Nuevamente se presenta una situación en la cual la interpretación de DEM plantea dificultades pues el signo es incorrecto. Por otra parte, la hipótesis de que un alto nivel de pedidos por atender incentivaría a los empresarios a aumentar los precios se ve rechazada pues aparece el tipo de asociación contraria: cuando el nivel de pedidos se juzga
si el nivel de pedidos por atender al principio del período \((t-1, t)\), es decir, \(PAT_{t-1}\), es alto, los empresarios pueden encontrar que las condiciones son favorables para subir los precios y si al menos una parte de ellos actúan en consecuencia, este comportamiento puede resultar en un DP positivo.

iv) Consideraciones similares son aplicables a los inventarios; si estos están a un bajo nivel como consecuencia de una fuerte demanda, los empresarios pueden sentirse alentados a incrementar los precios.

v) Se conjetura que la evolución reciente de los propios precios de venta y de los salarios (así como también la evolución contemporánea de estos) debe contribuir al incremento de los precios de venta de productos particulares. En realidad, es bien probable que la influencia que se captura incluyendo las variables correspondientes sea simplemente la del movimiento conjunto, continuamente creciente de los precios en una economía crónicamente inflacionaria.

Ecuación No. 8 (QESP)

Se hicieron los siguientes cambios:

i) Se adicionó el primer rezago de DQ.
ii) Se adicionó también la variable sustitutiva para la evolución de las ganancias (PRXGAN) sobre la base de la consideración general según la cual cuando las perspectivas de obtener ganancias son favorables los empresarios se sentían más inclinados a aumentar la producción.

iii) El flujo de pedidos toma el lugar del nivel de pedidos por atender. El cambio se hizo principalmente en procura de un mejor ajuste.

iv) En lugar de utilizar los cuellos de botella totales, se incluyó la variable cuellos de botella del lado de la oferta. Obviamente, las dos variables deben contener, aproximadamente la misma información.

Ecuación No. 9 (AEP)

Los siguientes fueron los cambios realizados:

i) En lugar de utilizar DEMESP, se incluyó el nivel de pedidos por atender, como un indicador de la intensidad de la demanda. Este cambio se basa en la siguiente reflexión: si AEP mide, como
en efecto parece ser el caso, los planes de precio de los empresarios, bajo el supuesto de que el precio es una variable controlable, estos planes pueden estar más estrechamente asociados con la demanda presente que con la demanda futura.

ii) Aplicando el esquema de expectativas extrapolativas explicado en la parte teórica de este trabajo, se considera adecuado suponer que las expectativas (o los planes, si este es, en verdad, el caso) de evolución futura de los precios de venta dependen de la evolución reciente de los mismos, la cual viene medida por \(DP_t \) y \(DP_{t-1} \).

iii) Las tasas de crecimiento de los índices de precios de insumos importados (DPII) y de insumos nacionales (DPIN) fueron sustituidos por la variable de opinión acerca de la tendencia en los costos de producción (DCP).

iv) La variable utilización de capacidad instalada fue descartada por que, aparentemente, no es significativa.

v) Se conjetura que los planes (o expectativas) de incremento en los precios de venta podrían guardar una relación autorregresión con
lo que fueron tales planes en el período inmediatamente anterior.

Por esta razón, se incluye AEP_{t-1} como variable explicativa.

Ecuación No. 10 (DEM)

En esta ecuación se introdujo una modificación que puede ser objeto de controversia. Nos referimos a la inclusión de DEMESP como variable explicativa. Como se señalará en el capítulo de análisis de los resultados, esta variable resulta altamente significativa. Pero el aspecto interesante de la cuestión estriba en que las pruebas de búsqueda de especificación permiten establecer la conclusión según la cual cuando se incluye DEMESP, el ajuste es supremamente bueno, mientras que cuando se excluye el R^2 cae bruscamente. En apoyo de la especificación finalmente adoptada, la cual parece francamente sospechosa desde el punto de vista teórico, se puede aducir lo siguiente:

a) Si se observa cuidadosamente el enunciado de las preguntas de la encuesta con base en las cuales se construyen las variables DEM y DEMESP, se notará que, para decir lo menos, no se inquiere

29/ Son las preguntas 12 y 13 del cuestionario mensual de FEDESARROLLO. Ver apéndice.
re de una manera suficientemente explícita acerca de la intensidad de la demanda actual y de la demanda esperada. No es improbable que los empresarios –o, al menos, una parte de ellos– interpreten que el propósito fundamental de la pregunta es recabar su opinión acerca de la capacidad instalada actual para la producción de X 30/.

b) En conexión con lo anterior, es pertinente mencionar que en el tratamiento teórico que Fayolle (1983) hace de la pregunta equivalente a la No. 12 en el cuestionario del INSEE, se considera que las respuestas a ésta representan el juicio de los empresarios acerca de la capacidad instalada. Siguiendo al mismo Fayolle, se puede pensar que, para una empresa dada, la opinión acerca de la capacidad asume una de las tres modalidades posibles de acuerdo con el valor de la relación entre la capacidad deseada para el período siguiente y la capacidad real heredada del pasado: si la relación sobrepasa un límite superior (mayor que 1), la capacidad se juzga insuficiente; si está por debajo de un cierto límite inferior (menos que 1) la ca

\[30/\] Obsérvese, además, en este mismo orden de ideas, que, a diferencia de la pregunta No. 12, en la pregunta No. 13 se habla de la "capacidad instalada actual" (El subrayado es nuestro).
a las preguntas 12 y 13. Tradicionalmente se han interpretado
por FEDESARROLLO como indicadores de la intensidad de la de-
manda presente y de la demanda esperada, respectivamente. Sin
embargo, a la luz de la discusión anterior y de la experiencia
en otros países parece plausible interpretarlas como juicios o apre-
ciaciones acerca de la capacidad instalada. Con el fin de ex-
perimentar en el marco de la última interpretación, se incluyó
la variable de opinión relativa al nivel de utilización de la ca-
pacidad instalada (que, por otra parte, es la única variable pro-
piamente cuantitativa de la encuesta) como variable explicativa
de DEM. Si efectivamente, DEM mide el juicio de los empre-
sarios acerca de la capacidad instalada, debe haber una relación
de proporcionalidad inversa entre DEM y UCI, en la medida en
que éste representa la capacidad actual.

En la misma línea de experimentación mencionada en el párrafo
anterior, se decidió incluir el nivel de pedidos por atender como
una determinante de DEM (en su interpretación de juicio de la
capacidad instalada). El razonamiento procede de la siguiente ma-
nera: si el nivel de pedidos por atender es muy alto (bajo) debe
esperarse una tremenda presión (ausencia de presión) sobre la capacidad existente y, por lo tanto, los empresarios se inclinarán a juzgar que la capacidad es insuficiente (más que suficiente).

Otros cambios fueron los siguientes:

i) Se eliminó el juicio acerca de los inventarios como variable explicativa, debido a que resultó no significativa. La explicación se encuentra, tal vez, en posibles relaciones de colinealidad entre INV$_t$ y PAT$_t$.

ii) Para que la influencia de UCI y PAT (cuya presencia, como ya se dijo, es congruente con la interpretación de DEM como juicio acerca de la capacidad instalada) estuviese controlada por la influencia de factores de demanda (congruentes con la interpretación tradicional de DEM) se incluyó el gasto exógeno rezagado tres meses como variable explicativa.

iii) Con el fin de sacar ventaja de las propiedades autorregresivas de DEM para mejorar el ajuste, se incluyó DEM$_{t-1}$.
iv) Se eliminó DPED_t dado que resultaba no significativa en las rondas de prueba.

Ecuación No. 11 (DEMESP)

El único cambio que se hizo fue la introducción de un indicador adicional de la demanda presente, a saber, el gasto exógeno.

Ecuación No. 12 (DESVQ)

Siguiendo la estructura básica de la especificación teórica propuesta en el Informe No. 3, se llevaron a cabo las siguientes modificaciones:

i) Se incluyó el cuarto rezago de QESP.

ii) Se sustituyó el cuarto rezago del Clima por el quinto, debido a que éste exhibe un mejor ajuste.

iii) Debido a la posible ambigüedad, arriba discutida, de DEM se incluyeron DPED_t y DPED_{t-1} como indicadores para la demanda presente y la demanda en el período anterior.
iv) Se adicionó DGX_{t-5} para mejorar el ajuste general de la ecuación.

v) Con el fin de aprovechar las propiedades autorregresivas de DESVQ, se incluyó el primer rezago.

Ecuación No. 13 (DN)

Los cambios realizados fueron los siguientes:

i) Se utiliza el salario nominal en lugar del salario real. Se incluye, además, el primer rezago de la variable salario.

ii) Se incluye el segundo rezago de DNESP para mejorar el ajuste general.

Ecuación No. 14 (DS)

La especificación final de esta ecuación incluye las siguientes modificaciones:

i) Se elimina el término constante. Las rondas de prueba de especificación permitieron detectar una cierta influencia per
turbadora proveniente de este término.

ii) Se adiciona el primer rezago de DS para sacar provecho de las propiedades autorregresivas de esta variable.
5. **ANALISIS E INTERPRETACION DE LOS RESULTADOS**

El modelo se estimó mediante el método de mínimos cuadrados en dos etapas \(^{32/}\).

Como es ampliamente conocido la esencia del método consiste en operar una transformación de cada ecuación del sistema original, premultiplicando todos sus términos por la matriz idempotente \(X(X'X)^{-1}X'\), lo cual conduce a una nueva matriz de diseño que es asintóticamente no correlacionada con los errores resultantes de la transformación, lo cual hace posible que la aplicación del método de estimación convencional de mínimos cuadrados a la nueva ecuación produzca estimadores que poseen propiedades óptimas \(^{33/}\). Lo que interesa destacar, sin embargo, es que precisamente por ser equivalente en su segunda etapa al procedimiento de regresión lineal convencional, toda estimación por MC2F se ve asediada por el mismo tipo de problemas que pueden sesgar y/o hacer inconsistente y/o hacer ineficiente al estimador de mínimos cuadrados ordinarios.

Interesa, por lo tanto, examinar si, a la luz de las pruebas estadísticas idóneas, se puede afirmar, con un alto grado de confiabilidad, que las ecuaciones de la segun-

\(^{32/}\) Los supuestos en que se basa este método de estimación pueden consultarse en Theil (1971).

\(^{33/}\) En particular, el estimador de mínimos cuadrados en dos etapas (MC2E) es consistente. Sin embargo es, en general, asintóticamente ineficiente.
da etapa del MIPI cumplen con los supuestos y las condiciones bajo las cuales el estimador de mínimos cuadrados es válido. Siguiendo el procedimiento acostumbrado en la evaluación de este tipo de regresiones, el examen que viene a continuación da por cierta la validez del supuesto según el cual la esperanza de los errores es cero y concentra su atención sobre el cumplimiento de los supuestos de independencia estocástica de los errores a través del tiempo, de varianza constante de los mismos y de aquel según el cual el rango de la matriz de observaciones de las variables explicativas es igual al número de regresores de la correspondiente ecuación. En otros términos, se investigará si las distintas ecuaciones del modelo están afectadas por los problemas de autocorrelación, heteroscedasticidad y multicolinealidad.

5.1 Pruebas de Autocorrelación

Como se puede observar en los listados anexos, el paquete estadístico que se utilizó en la estimación del modelo imprime el estadístico de Durbin-Watson y el relativamente menos conocido estadístico Q de Box y Pierce 34/1. Como lo advierte el manual correspondiente 35/1, en el caso de la prueba de Box y Pierce, el paquete de mallas informa el nivel de significación margi-

34/ Ver Box y Pierce (1970) para una explicación de las características de la prueba.
nal o valor P de los resultados de la prueba \(36/\). La distribución usada en el cálculo del estadístico es una Chi cuadrada con \(M\) grados de libertad, donde \(M\) se selecciona de acuerdo con

\[M = \min \left(N/2, 3N^{1/2} \right) \]

siendo \(N\) el tamaño de la muestra. Esta no es la verdadera distribución asintótica, la cual, en el caso de modelos autorregresivos tiene \(M-K\) grados de libertad, donde \(K\) es la longitud del mayor rezago entre las variables dependientes, rezagadas. Además, si la lista de variables explicativas contiene tanto variables exógenas como rezagos de la variable dependiente, la aproximación sobre la cual se basa la prueba deja de ser válida. Por estas razones \(Q\) puede considerarse, únicamente, como una medida burda de la correlación serial general de los residuos.

En lo que toca al estadístico de Durbin y Watson es preciso advertir que también tiene sus limitaciones. Cuando el estimador de mínimos cuadrados

\(36/\) Recuérdese que el valor P correspondiente al valor observado \(x\) de un estadístico \(X\) es la máxima probabilidad de que el estadístico asumirá un valor tan extremo o más que el de \(x\) cuando la hipótesis nula es verdadera. Consúltense, por ejemplo, Madsen y Moeschberger (1980).
es relativamente ineficiente y necesitamos urgentemente detectar la corre-
Lación serial la prueba D-W puede tener un poder muy bajo. En particular,
como lo demostraron Nerlove y Wallis (1966) y Durbin (1970), es probable
que en la presencia de una variable dependiente rezagada el estadístico ten-
ga un reducido poder y que esté sesgado hacia el valor 2 (el valor que co-
rresponde a ausencia de autocorrelación). Por esto en aquellas ecuaciones
que contienen variables dependientes rezagadas se decidió utilizar el "es-
tadístico h" desarrollado por el propio Durbin (1970), el cual tiene validez
asintótica.

Retornando al estadístico de Durbin y Watson es necesario señalar, sin em-
bargo, que, en términos generales, ha salido bien librado de las compara-
ciones con otras pruebas que se han sugerido, razón por la cual se utiliza
en este trabajo para aquellas ecuaciones en las cuales no hay variables de-
pendientes rezagadas. Como además se cuenta, sin esfuerzo alguno, con
el valor P de la prueba de Box y Pierce también se utilizará como un indica-
dor de la presencia o ausencia de autocorrelación.
El Cuadro 1 da cuenta de los resultados de las pruebas D-W y de Box y Pierce para aquellas ecuaciones que no contienen variable dependiente rezagada. Las ecuaciones se identifican con el símbolo de la variable dependiente correspondiente. La hipótesis nula H_0 es la de no autocorrrelación. En todos los casos, la prueba de D-W conduce al rechazo de la hipótesis. Enseguida del NO, entre paréntesis, se informa el tipo de autocorrrelación exis

CUADRO 1

PRUEBAS DE LA HIPÓTESIS DE NO AUTOCORRELACIÓN PARA LAS ECUACIONES QUE NO CONTIENEN VARIABLES DEPENDIENTES REZAGADAS

<table>
<thead>
<tr>
<th>Ecuación</th>
<th>Prueba de Durbin y Watson</th>
<th>Prueba de Box y Pierce</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI</td>
<td>NO (+)</td>
<td>SI</td>
</tr>
<tr>
<td>DQ</td>
<td>NO (+)</td>
<td>SI</td>
</tr>
<tr>
<td>DPED</td>
<td>NO (+)</td>
<td>SI</td>
</tr>
<tr>
<td>DPAT</td>
<td>NO (+)</td>
<td>SI</td>
</tr>
<tr>
<td>PAT</td>
<td>NO (+)</td>
<td>NO</td>
</tr>
<tr>
<td>QESP</td>
<td>NO (+)</td>
<td>NO</td>
</tr>
<tr>
<td>DEMESP</td>
<td>NO (+)</td>
<td>SI</td>
</tr>
<tr>
<td>DN</td>
<td>NO (+)</td>
<td>SI</td>
</tr>
</tbody>
</table>
tente, de acuerdo con la prueba. La autocorrelación es positiva en todos los casos. Por su parte, la prueba de Box y Pierce rechaza la hipótesis nula sólo en dos casos. Teniendo en cuenta las consideraciones arriba anotadas, las cuales de una manera general favorecen a la prueba de D-W frente a la de Box y Pierce, en aquellos casos en que existe conflicto se prefiere suponer la validez del resultado de la prueba de D-W.

Como ya se señaló, para las ecuaciones restantes se buscó calcular el estadístico h de Durbin. Desafortunadamente, en los casos de dos ecuaciones (DP y AEP) el cálculo conduce a un número que no es un elemento del conjunto de los reales y que por lo tanto no es utilizable en conexión con las tablas de la distribución normal 37/. Como, de otro lado, la aplicación de la prueba de Durbin-Watson (que, insistimos, no es la apropiada) nos deja en la incertidumbre puesto que, en ambos casos, los estadísticos D-W

37/ La fórmula correspondiente es

$$h = r_1 \sqrt{ \frac{N}{1 - N V(b_1)}}$$

donde r_1 es el coeficiente de correlación de primer orden, N es el tamaño de la muestra y $V(b_1)$ es el estimador de mínimos cuadrados de la varianza del coeficiente de la variable dependiente rezagada Y_{t-1}. Es claro que si $NV(b_1) > 1$, h deviene un número complejo.
caen dentro de la "región no concluyente", se prefiere suponer que la auto-
correlación existe y, en consecuencia, tomar las medidas correctivas a las
que se hará referencia más adelante.

En las restantes ecuaciones con variable dependiente rezagada (aquellas
para INV, DEM, DESVQ y DS) se encontró que el valor de h es tal que
debe aceptarse la hipótesis de ausencia de correlación serial de los errores.

5.2 Corrección de la Autocorrelación

Es un resultado bien establecido que, en la presencia de autocorrelación,
el estimador de mínimos cuadrados continúa siendo inesgado y consistente
si el conjunto de las variables explicativas no incluye variables dependientes
rezagadas. Sin embargo, el estimador de MC deja de ser, en general, efi-
ciente. La corrección más frecuentemente usada es la dictada por el pro-
cedimiento de Cochrane-Orcutt. Existe, además, un buen número de otros
procedimientos cuya validez depende crucialmente de la especificación co-
recta del proceso estocástico de autocorrelación entre los residuos.

Como quiera que siempre existe incertidumbre acerca de la especificación
apropiada, el autor se inclina por darle la razón a Engle (1974) quien argu
mentó que, si bien debe reconocerse la posibilidad de obtener una ganancia importante en términos de eficiencia si se logra una buena especificación, la comparación relevante desde el punto de vista práctico no es aquella entre el estimador óptimo para un proceso que se supone conocido y el ineficiente estimador de MC sino entre la relativa eficiencia de dos especificaciones equivocadas, caso que es de ocurrencia más probable. Engle muestra que la adopción del estimador de MC puede ser mejor, a menudo, que suponer otro truncamiento distinto, pero también incorrecto del proceso real. Vista la cuestión desde un ángulo, complementario se puede afirmar que bien podría valer más perder un poco de eficiencia pero conservar el carácter insesgado y consistente del estimador de MC, en lugar de arriesgar este valioso atributo a cambio de una insegura ganancia en eficiencia que, como lo demuestran los ejercicios llevados a cabo por Engle, puede resultar, por contraste, en una pérdida adicional de eficiencia. En este respecto, debe tenerse siempre presente que los supuestos requeridos para que el procedimiento de Mínimos Cuadrados Generalizados (del cual el método de Cochrane–Orcutt es una variante) produzca estimadores consistentes son más estrictos que los requeridos para el estimador de MC. En este mismo sentido se expresan Brown y Maital (1981) cuando advierten que la aplica-
ción mecánica (y, algunas veces, irreflexiva) de procedimientos más comunes de corrección de la correlación serial pueden, de hecho, ser contra-productiva 38/.

El asunto asume dimensiones distintas cuando se considera el caso de aquellas ecuaciones que contienen, en su lado derecho, variables dependientes rezagadas. En la presencia de autocorrelación el estimador de mínimos cuadrados de tales ecuaciones deviene inconsistente y es preciso reemplazarlo. La dificultad estriba en que los procedimientos correctivos más acostumbrados —como el arriba mencionado de Cochrane y Orcutt o Mínimos Cuadrados Filtrados— producen estimadores inconsistentes. Empero, Hatanaka (1974) desarrolló un estimador consistente y asintóticamente eficiente para el modelo de ajuste dinámico con errores autorregresivos, conocido con el nombre de estimador en dos pasos de Hatanaka. Este procedimiento se emplea en este trabajo para corregir la autocorrelación serial en las ecuaciones para DP y AEP.

5.3 Pruebas de Heteroscedasticidad

Las pruebas de heteroscedasticidad más difundidas en los libros de texto de

38/ También Hayashi y Sims (1983) han encontrado casos en los cuales los estimadores de mínimos cuadrados generalizados producen estimativos inconsistentes.
la econometría son las propuestas por Goldfeld y Quandt (1965), Rutmiller y Bowers (1968), Glejser (1969), y Harvey (1976). Todas ellas requieren que el investigador disponga de un modelo formal del proceso que genera el cambio en la varianza. El problema reside en que, incluso cuando se dispone de dicho modelo, no existe certeza de que éste sea correcto. White (1980) hizo una contribución decisiva hacia la superación de esta dificultad al proponer una prueba directa de heteroscedasticidad que no depende de un modelo formal de la estructura de la misma. En su versión simplificada, la prueba establece que bajo un conjunto de supuestos, incluido el de homoscedasticidad, el estadístico \(NR^2 \), donde \(N \) es el tamaño de la muestra y \(R^2 \) es el cuadrado del coeficiente de correlación múltiple, se distribuye como una Chi-cuadrado con \(K(K+1)/2 \) grados de libertad. White advierte que, dados los supuestos en que se basa el teorema que permite la construcción del estadístico para la prueba, la hipótesis nula correspondiente sostiene no solamente que los errores son homoscedásticos sino también que son independientes de los regresores y que el modelo está correctamente especificado. Como las ecuaciones de la segunda etapa del MIPI son el resultado de una transformación tendiente a establecer la independencia entre la perturbación aleatoria y los regreso-
res la única fuente de ambiguedad que persiste, en caso de que la hipótesis
nula sea rechazada, se refiere a la especificación de la ecuación correspon-
diente. Empero, si el investigador está suficientemente seguro de la validez
de la especificación, la única razón para el rechazo de la hipótesis nula es
la existencia de heteroscedasticidad.

La prueba de heteroscedasticidad de White se aplicó a las ecuaciones del
MIPI con los resultados que se consignan en el Cuadro 2.

CUADRO 2

RESULTADOS DE LA PRUEBA DE WHITE

PARA H₀: HOMOSCEDASTICIDAD

<table>
<thead>
<tr>
<th>Ecuación</th>
<th>nR²</th>
<th>K(K + 1) / 2</th>
<th>Se acepta H₀?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI</td>
<td>38.955</td>
<td>36</td>
<td>SI</td>
</tr>
<tr>
<td>DQ</td>
<td>46.550</td>
<td>28</td>
<td>SI</td>
</tr>
<tr>
<td>INV</td>
<td>46.256</td>
<td>10</td>
<td>NO</td>
</tr>
<tr>
<td>DPED</td>
<td>45.031</td>
<td>10</td>
<td>NO</td>
</tr>
<tr>
<td>DPAT</td>
<td>46.550</td>
<td>21</td>
<td>NO</td>
</tr>
<tr>
<td>PAT</td>
<td>47.040</td>
<td>15</td>
<td>NO</td>
</tr>
<tr>
<td>DP</td>
<td>43.071</td>
<td>55</td>
<td>SI</td>
</tr>
<tr>
<td>QESP</td>
<td>29.596</td>
<td>45</td>
<td>SI</td>
</tr>
<tr>
<td>AEP</td>
<td>33.369</td>
<td>28</td>
<td>SI</td>
</tr>
<tr>
<td>DEM</td>
<td>47.726</td>
<td>21</td>
<td>NO</td>
</tr>
<tr>
<td>DEMESP</td>
<td>43.365</td>
<td>10</td>
<td>NO</td>
</tr>
<tr>
<td>DESVQ</td>
<td>46.795</td>
<td>55</td>
<td>SI</td>
</tr>
<tr>
<td>DN</td>
<td>22.197</td>
<td>21</td>
<td>SI</td>
</tr>
<tr>
<td>DS</td>
<td>25.578</td>
<td>6</td>
<td>NO</td>
</tr>
</tbody>
</table>
Por considerar que la línea de razonamiento desarrollada a propósito del problema de la corrección para autocorrelación es aplicable al problema de hallar un procedimiento que corrija la posible ineficiencia del estimador de MC, nos abstenemos de proceder a tales correcciones y preferimos adherirnos con firmeza a la ventaja derivada del hecho de que, incluso bajo condiciones de heteroscedasticidad el estimador de MC para los coeficientes continúa siendo insesgado y consistente.

Es imperativo tener en cuenta, sin embargo, que la presencia de heteroscedasticidad en un modelo apropiadamente especificado desde otros puntos de vista conduce a un estimador inconsistente para la matriz de varianzas y covarianzas de los coeficientes, lo cual lleva, a su vez, a que sean incorrectas las pruebas de hipótesis que descansan sobre el estadístico calculado con base en el estimador de mínimos cuadrados de la mencionada matriz. Con el fin de resolver esta dificultad White (1980) propuso un estimador consistente de la matriz en cuestión.

Es importante recordar que la inconsistencia de la matriz de varianzas estimada a partir del método de mínimos cuadrados también se presenta en el caso de autocorrelación serial de los residuos, lo cual implica que lo que
se acaba de afirmar a propósito del carácter incorrecto del estadístico \(t \) en casos de heteroscedasticidad es enteramente aplicable en los casos de autocorrelación. La importancia de la contribución de White estriba, precisamente en que su estimador consistente es aplicable a todos los casos en los que se viola el supuesto según el cual la matriz de varianzas y covarianzas del término de error estocástico es el producto de un escalar positivo por la matriz identidad. Una ventaja crucial del estimador de White frente a los que se pueden derivar de los procedimientos correctivos de autocorrelación y heteroscedasticidad es el hecho de que, para su cálculo, no se requiere una estructura formal de la naturaleza de la autocorrelación o de la heteroscedasticidad.

En este trabajo se aplica el estimador de White a las ecuaciones del sistema que exhiben heteroscedasticidad y autocorrelación y, en cada caso, se usa el nuevo estimador para recalcular el estadístico \(t \). Es este estadístico \(t \) recluculado el que se utiliza en las pruebas de hipótesis acerca de la validez de los diversos coeficientes.

5.4 Pruebas para la detección de Multicolinealidad

Dado el carácter no experimental de la ciencia económica, los datos emplea...
dos en la estimación de los modelos econométricos rara vez son generados por el investigador. Una de las consecuencias de esta situación es el hecho de que, a menudo, la muestra disponible no contiene información suficiente que haga posible la investigación del espacio de los parámetros de un modelo econométrico, lo cual desemboca en una ambigüedad de los resultados estadísticos. El tipo particular de falta de adecuación del diseño experimental más frecuentemente hallada consiste en la existencia de interrelaciones generales en el seno del conjunto de variables explicativas que conforman la matriz de diseño. La principal consecuencia de esta colinealidad es que llega a ser muy difícil obtener estimaciones precisas de los efectos separados de las variables involucradas. De hecho, puesto que los coeficientes de regresión reflejan los efectos de los cambios en las variables correspondientes, ceteris paribus, nuestra capacidad de interpretarlos declina a medida que la colinealidad es más severa. La falta de precisión se manifiesta en la existencia de errores muestrales potencialmente grandes en los estimadores de los coeficientes. Dado lo anterior, algunos parámetros pueden aparecer como si no fueran significativamente diferentes de cero, y pueden ser descartados, no porque las variables correspondientes no ejerzan ningún efecto sobre la variable dependiente sino porque la muestra es ina-
decuado para aislar dicho efecto de una manera precisa.

Si nos hemos extendido un poquito sobre las causas y consecuencias de la multicolinealidad es porque sospechamos que varias ecuaciones del MIPI pueden estar seriamente afectadas por este problema, como tendremos oportunidad de exponerlo cuando se haga el análisis de los coeficientes estimados de cada ecuación. La sospecha de la presencia más o menos importante de relaciones de colinealidad entre las variables del sistema se fundamenta no sólo en la existencia efectiva de inter-relaciones entre los fenómenos del mundo real representados por tales variables —tanto aquellas que constituyen el objeto de la opinión de los empresarios como las que se registran en la encuesta del DANE—, sino en la forma misma en que se recolecta la información de las variables de opinión. En efecto, como ya se anotó arriba, es razonable presumir que el conjunto de decisiones involucradas en la actividad de responder a una encuesta de opinión sean más fuertemente interdependientes que las variables económicas del mundo real a las cuales se refieren las opiniones, los juicios y las expectativas de los empresarios encuestados. Esta conjetura se ve reforzada por la circunstancias de que, a diferencia de los procesos económicos externos a la conciencia del observador, los procesos de toma de decisión antes mencionados se hallan con-
centrados de una manera intensa en un intervalo de tiempo muy corto.

La detección de la presencia de multicolinealidad es estrictamente hablando, un problema no resuelto en el estado actual de desarrollo de la econometría como disciplina teórica. La mayoría de los procedimientos propuestos en la literatura son reglas basadas en el sentido común al margen de una rigurosa fundamentación científica. Prácticamente los únicos métodos de detección que se desvuelven en un terreno de rigor conceptual son el propuesto por Farrar y Glaüber (1967) y Willan y Watts (1978), y el sugerido por Belsley, Kuh y Welsch 39/. El primero se basa en el cálculo del determinante de la matriz de los primeros momentos de los vectores de la matriz de diseño. El método tiene, sin embargo, varias desventajas. En primer lugar, no proporciona información acerca del número o la forma de las dependencias lineales que puedan existir entre las variables explicativas 40/. En segundo lugar, como lo demuestra Kumar (1975), el hecho de que las muestras de variables económicas contengan observaciones dependientes entre sí

39/ Ver Belsley, Kuh y Welsch (1980), citado por Judge et al. (1982).

40/ La explicación de por qué esto es así puede encontrarse en Judge (1982).
invalida la base teórica sobre la cual se monta la prueba de Farrar y Glauber.

El método de Belsley, Kuh y Welsch (o método de la descomposición en valores singulares) se basa en el análisis de las raíces propias y los vectores propios de la matriz de primeros momentos de las variables explicativas. El número de raíces características relativamente pequeñas indica el número de relaciones de dependencia Carrollas a la perfecta linealidad entre los vectores columna de la matriz de diseño. Además, puesto que el hecho de ser pequeña una raíz característica implica que el producto del vector característico correspondiente por la matriz de diseño tiende a cero, cada relación de dependencia casi lineal se puede identificar por la correspondiente raíz característica. Belsley, Kuh y Welsch proponen concentrar la atención sobre lo que ellos denominan el número acondicionador o sea la razón entre la primera raíz característica, \(\lambda_1 \), que es la correspondiente al vector de unos de la matriz de diseño y la K-ésima raíz característica, \(\lambda_K \), donde \(K = 2, \ldots, K \) es el subíndice que identifica las variables explicativas distintas al término constante.

En el criterio para definir qué constituye una raíz característica pequeña
yace la debilidad de este enfoque. Los mencionados autores proponen que si el número acondicionador es mayor que 900, existe, entonces, una relación de casi dependencia lineal que involucra al vector \(X \).

Sin embargo, al hacer esto, caen en el terreno de las reglas de sentido común, más o menos arbitrarias. El punto lo anotan Judge et al. (1982), quienes añaden que una segunda debilidad del enfoque basado en la descomposición de la matriz consiste en que cuando hay varias raíces características relativamente pequeñas, lo cual indica que hay varias relaciones lineales casi exactas, la operación de aislar las distintas relaciones lineales involucradas es difícil de realizar.

A la luz de las anteriores consideraciones, el método basado en la descomposición de la matriz de primeros momentos no puede considerarse una solución completa al problema. Sin embargo, este procedimiento permite, al menos, identificar, con frecuencia, tanto el número como la naturaleza de las relaciones de dependencia lineal y el efecto de ellas sobre las varianzas de los coeficientes estimados. Por esta razón, es definitivamente superior a los métodos alternativos y se usa en este trabajo para la detección del problema de multicolinealidad. Empero, en la aplicación de este enfoque no se sigue al pie de la letra la re
Esta regla requiere ciertas transformaciones de los valores observados de las variables explicativas para, de todas maneras, llegar a una regla de sentido común. Aquí se ha preferido tomar el atajo de formular una regla alternativa, obviamente arbitraria, acerca de lo que constituye una raíz característica pequeña. Como el tipo de transformación propuesto por Belsley et al. conduce a la disminución del valor numérico de las raíces características, nuestra regla compensa la ausencia de esta transformación con una elevación del umbral para el número acondicionador más allá del cual \(\lambda_k \) se considera una raíz pequeña. Este umbral se coloca en \(\lambda_i / \lambda_k = 10.000 \). Dado el carácter mismo de la regla que se propone, sólo se pretende hacer una primera aproximación al diagnóstico de la presencia de multicolinealidad.

El Cuadro 3 presenta los resultados de la prueba basada en la descomposición en valores singulares 41/. Como se puede observar, sólo dos

41/ Adviértase que en los cocientes \(\lambda_i / \lambda_k \), el \(\lambda_k \) de cada fila en general corresponde a una variable explicativa distinta. En cada caso se trata de la K-ésima variable explicativa de la ecuación correspondiente en el orden en que aparecen en los listados de computador. La K-ésima variable explicativa es por supuesto distinta para cada ecuación.
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>1/2</th>
<th>1/3</th>
<th>1/4</th>
<th>1/5</th>
<th>1/6</th>
<th>1/7</th>
<th>1/8</th>
<th>1/9</th>
<th>1/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI</td>
<td>32.21</td>
<td>174.15</td>
<td>309.89</td>
<td>673.96</td>
<td>2010.75</td>
<td>9093.09</td>
<td>26206772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DQ</td>
<td>11.62</td>
<td>41.37</td>
<td>119.35</td>
<td>229.42</td>
<td>360.98</td>
<td>333446</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INV</td>
<td>3.05</td>
<td>5.13</td>
<td>3898.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPED</td>
<td>6.66</td>
<td>19.75</td>
<td>2460.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPAT</td>
<td>19.34</td>
<td>40.08</td>
<td>162.91</td>
<td>1621.40</td>
<td>343567</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAT</td>
<td>22.55</td>
<td>56.45</td>
<td>181.48</td>
<td>321191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP</td>
<td>139.92</td>
<td>26.19</td>
<td>150.00</td>
<td>516.28</td>
<td>1187.28</td>
<td>2808.84</td>
<td>562606</td>
<td>41246556</td>
<td>1.8008E8</td>
</tr>
<tr>
<td>QESP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEP</td>
<td>30.54</td>
<td>61.72</td>
<td>386.47</td>
<td>3613.06</td>
<td>1046932</td>
<td>1.1201E8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEM</td>
<td>70.92</td>
<td>174.10</td>
<td>826.48</td>
<td>2379.58</td>
<td>51940826</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEMESP</td>
<td>188.21</td>
<td>2677.17</td>
<td>216983</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESVQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN</td>
<td>38.93</td>
<td>87.25</td>
<td>3646.21</td>
<td>43633880</td>
<td>2.1619E8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>8619397</td>
<td>16165834</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ecuaciones (aquellas para INV y DPED) aparecen inmunes al flagelo de la multicolinealidad. Todas las demás se encuentran afectadas en una u otra medida. La más afectada de todas parece ser la ecuación para DP, en la cual tres raíces características resultan ser demasiado pequeñas. En orden de severidad de la multicolinealidad siguen las ecuaciones para AEP, DS y DN que contienen dos raíces características relativamente pequeñas cada una. Claro está que en términos relativos se puede afirmar que la multicolinealidad más intensa se presenta en la ecuación para DS en la cual todos los regresores parecen contribuir al problema.

Como ya se señaló arriba la principal consecuencia del hecho de que el modelo esté permeado por el problema de multicolinealidad es la imprecisión en las estimaciones de los efectos separados de las distintas variables explicativas sobre la variable dependiente. No sólo puede de suceder que los coeficientes de algunas variables verdaderamente explicativas aparezcan como no significativos o que los valores de los mismos devengan inestables cuando se introducen variables colineales adicionales sino que incluso los signos de ellos pueden verse seriamente distorsionados. También puede suceder que el R^2 de la re-
gresión sea alto y, sin embargo, los resultados sean altamente imprecisos (con signos equivocados y/o grandes errores standard). Estas posibles consecuencias plantean varias dificultades cuando se analizan los coeficientes desde el punto de la validez de las hipótesis teóricas que han iluminado la especificación de las ecuaciones.

No obstante lo anterior es importante poner de presente que cuando el objetivo principal de un modelo econométrico es el ser usado para propósitos de predicción, las potencialidades del modelo no se ven necesariamente afectadas. A este respecto, Koutsoyiannis (1973) anota:

"Si el propósito de la estimación es predecir los valores de la variable dependiente, entonces, podemos incluir las variables intercorrelacionadas e ignorar los problemas de multicolinealidad, siempre y cuando tengamos certeza de que el mismo patrón de intercorrelación de las variables explicativas continuará en el período de predicción. Podemos obtener buenos pronósticos incluso sin ser capaces de desentrañar las influencias separadas de las variables explicativas (...)" (p. 244. La traducción es nuestra).

5.5 Interpretación de los coeficientes

A continuación se presenta un análisis de los coeficientes estimados de
cada ecuación y de las implicaciones que de ellos se derivan para las
hipótesis teóricas en que se basó la especificación del modelo. El aná-
ilisis se llevará a término ecuación por ecuación. A manera de adver-
tencia, debe recordarse que la mayoría de las ecuaciones están afecta-
das por multicolinealidad y que en esta circunstancia puede (e incluso,
debe) residir la explicación de por qué algunos coeficientes que, a priori,
se esperaba fueran significativos, no parecen serlo a la luz de los
resultados obtenidos. Lo mismo se puede decir a propósito de un conjun-
to de coeficientes que exhiben signos opuestos a los que cabe esperar a
la luz de la teoría. Sin embargo, en el examen que viene a continua-
ción nos abstendremos de estar invocando el problema de multicolinea-
lidad cada vez que se presente cualquiera de las dos situaciones que se
acaban de mencionar y actuaremos como si los estimadores fuesen co-
rectos. Adviértase que los estadísticos t que se informan son los que
resultan de la aplicación del estimador consistente de la matriz de va-
rianzas y covarianzas de los coeficientes o del procedimiento de Hata-
naka, según que la ecuación adolezca de heteroscedasticidad o de au-
tocorrelación serial.
Ecuación No. 1: Clima de los Negocios

La ecuación estimada es 42/:

\[
\begin{align*}
\text{CLI} & = 68.52013 - 0.2163743 \text{DEM}_t - 0.1531306 \\
& \quad \text{DEM}_t - (-1.049129) - (-2.358301) \\
\text{DCP}_t & + 0.03983322 \text{DPED}_{t-1} - 4.098668 \text{PRXGAN}_t \\
& \quad \text{DPED}_{t-1} (-0.3434138) - (-1.618741) \\
& + 0.09576162 \text{INV}_t + 0.2673557 \text{PAT}_{t-1} + 0.1889674 \text{DQ}_t \\
& \quad \text{INV}_t (0.4455133) + \text{PAT}_{t-1} (1.613604) + \text{DQ}_t (1.715592)
\end{align*}
\]

\[
\bar{R}^2 = 0.760
\]

\[
\text{D-W} = 0.6200 43/
\]

Como se puede apreciar el único coeficiente significativo y cuyo signo, además, coincide con el propuesto por la teoría es el de DCP. Los demás coeficientes son no significativos. Con dos excepciones, los sig

42/ De acuerdo con el procedimiento acostumbrado el número entre paréntesis debajo de cada coeficiente es el estadístico t correspondiente.

43/ El R^2 y el D-W corresponden, en cada ecuación, a la estimación inicial, es decir, a los resultados de la estimación antes de corregir las varianzas y covarianzas de los coeficientes. Ver Doan y Litterman (1984, p. 16-10).
nos son los esperados. Las dos excepciones son los coeficientes de
DEM y PRXGAN.

Ecuación No. 2 : Incremento en la producción en el último período

\[
\begin{align*}
DQ &= 3.692861 - 0.404501 \text{INV}_{t-1} + 0.2683196 \text{PAT}_{t-1} \\
&\quad + 0.8264721 \text{DPED}_t + 0.1345154 \text{CLI}_{t-3} + 0.007998 \text{DGX}_{t-5} \\
&\quad + 0.01560145 \text{CBO}_{t-1} \\
R^2 &= 0.943 \\
D-W &= 1.00559
\end{align*}
\]

Los coeficientes para INV$_{t-1}$, PAT$_{t-1}$, DPED$_{t}$ y CLI$_{t-3}$ resultan significativos y con el signo previsto. El coeficiente para DGX tiene el signo correcto pero no es significativo. El coeficiente para CBO$_{t-1}$ tiene el signo incorrecto y no es significativo.

Ecuación No. 3 : Opinión acerca del nivel de los inventarios

Aunque las pruebas de autocorrelación condujeron a la aceptación de la hipótesis de ausencia de la misma, se juzgó prudente aplicar el pro
cedimiento de estimación de Hatanaka por dos razones:

i) En pruebas de autocorrelación realizadas en el marco de un modelo ligeramente distinto, pero con exactamente la misma especificación para esta ecuación, se había encontrado autocorrelación.

ii) Se sospecha que la alta dependencia lineal entre INV_t e INV_{t-1} puede ser una causa de autocorrelación.

Los resultados son los siguientes:

\[
INV_t = 2.63558 + 0.313445 \cdot DPAT_t + 0.8333359 \\
\quad \quad \quad \quad \quad (1.720832) \quad (2.129667) \quad (11.5224)
\]

\[
INV_{t-1} = 0.1179435 \cdot DPED_t + 0.03683964 \cdot R_{3,t-1} \\
\quad \quad \quad \quad \quad (-0.8826361) \quad (0.2437697)
\]

\[
\frac{R^2}{R} = 0.940 \\
D-W = 0.92944342
\]

$R_{3,t-1}$ es el residuo de la ecuación de la segunda etapa del método de MC2E. El coeficiente de $DPAT_t$ es significativo pero el signo es erróneo. El coeficiente de $DPED_t$ es no significativo y el signo es correcto. El coeficiente de INV_{t-1} es altamente significativo.
implica que cuando los empresarios evalúan los inventarios como dema-
siado grandes, esta situación, y por lo tanto la correspondiente opinión
tiende a prolongarse hacia el futuro.

Ecuación No. 4 : Incremento en el Flujo de pedidos

\[\text{DPED}_t = 0.5587934 + 0.03963502 \text{ GX}_t-2 - 0.002205205 \]
\[(0.4872884) \quad (0.5865102) \quad (-.0.2785818) \]

\[\text{CLI}_{t-1} + 1.112752 \text{ DQ}_t \]
\[(22.78614) \]

\[R^2 = 0.914 \]

\[D-W = 0.72746084 \]

El único regresor significativo es DQ, con un altísimo estadístico \(t \);
confirmando así lo arriba expresado acerca de la estrecha correlación
entre el flujo de pedidos y el incremento en la producción. Los coe-
ficientes del Clima y del gasto exógeno son no significativos.
Ecuación No. 5: Cambio en el nivel de pedidos por atender

\[
\begin{align*}
\text{DPAT}_t & = -2.238887 + 1.143612 \text{DPED}_t - 0.2950201 \text{DQ}_t \\
& (-0.8885588) \quad (8.38484) \quad (-1.798923) \\
- 0.2264406 \text{DEM}_t + 0.03065059 \text{CBO}_t + 0.02914209 \text{INV}_{t-1} \\
& (-3.695028) \quad (0.7013442) \quad (0.4786601)
\end{align*}
\]

\[
R^2 = 0.944
\]

\[
D-W = 1.08642441
\]

Los coeficientes de \(\text{DPED}_t \) y \(\text{DEM}_t \) son significativos y el signo del primero coincide con lo esperado. Empero, si \(\text{DEM}_t \) se interpreta como la opinión sobre la intensidad de la demanda el signo resulta ser erróneo. Los coeficientes de \(\text{DQ}_t \), \(\text{CBO} \) e \(\text{INV}_{t-1} \) son no significativos.

Ecuación No. 6: Nivel de pedidos por atender

\[
\begin{align*}
\text{PAT}_t & = -15.3935 + 0.7698322 \text{INV}_t - 0.3653042 \text{DEM}_t \\
& (-6.3778) \quad (16.57382) \quad (-6.294664) \\
+ 0.3056545 \text{DPED}_t + 0.07760144 \text{CBO}_t \\
& (6.332376) \quad (2.189145)
\end{align*}
\]

\[
R^2 = 0.957
\]

\[
D-W = 0.53733089
\]
alto al principio del período \(t - 1, t \) los precios caen. Curiosamente aparece una correlación negativa y no significativa entre \(\text{AEP}_t,3 \) y \(\text{DP}_t \) lo cual significaría que si AEP se interpreta como una expectativa, la realización resulta ser la contraria. El coeficiente de \(\text{INV}_{t-1} \) es significativo pero el signo es incorrecto. El patrón de signos de \(\text{DS}_t \) y \(\text{DS}_{t-1} \) (ambos de cuyos coeficientes son no significativos) resulta difícil de racionalizar en términos teóricos pues significaría que un incremento del salario nominal en este mes se asociaría con un descenso \(! \) del precio de venta en el mes siguiente, pero con un incremento en el actual. Una dificultad similar se encuentra para conciliar el patrón de signos encontrados para \(\text{DP}_{t-1}, \text{DP}_{t-3} \) con cualquier teoría de evolución de los precios.

Ecuación No. 8 : Expectativas de Producción

\[
\begin{align*}
\text{QESP}_t &= -21.32026 - 1.382508 \text{DQ}_t - 0.1768859 \text{DQ}_{t-1} \\
&\quad (-0.3104336) \quad (-2.353338) \quad (-0.9162030) \\
&+ 1.7743 \text{CLI}_t - 1.152942 \text{INV}_t - 0.2081764 \text{DEMESP}_t \\
&\quad (5.663626) \quad (23.995547) \quad (-0.7626299) \\
&+ 0.2943528 \text{CB}_t - 0.3796494 \text{PRXGAN}_t + 1.129621 \text{DPED}_t \\
&\quad (1.4366443) \quad (-0.0603664) \quad (2.419991)
\end{align*}
\]
\[R^2 = 0.525 \]
\[D-W = 0.688222 \]

Nuevamente se encuentran dificultades con los signos: el coeficiente de \(DQ_t \) (que es significativo) y el de \(DQ_{t-1} \) (que no es) exhiben signos negativos lo que significaría que aumentos recientes en la producción inducen a los empresarios a esperar un descenso de la misma en el trimestre siguiente. Lo que la observación del proceso económico real señala es que una tal ocurrencia sería muy excepcional. El coeficiente del Clima, por otra parte, es significativo y con el signo correcto lo cual tendería a confirmar la tesis de que esta variable es un buen indicador avanzado de la producción industrial. El coeficiente de los inventarios es significativo y negativo lo cual va en la dirección esperada por la teoría. El signo del coeficiente de DEMESP es incorrecto. Los signos de \(CB_t \) y \(PRXGAN_t \) son claramente incorrectos y además, los coeficientes son no significativos. Finalmente, el coeficiente de \(DPED \) es significativo y el signo correcto, lo cual confirma la apreciación según la cual esta variable es un buen indicador de la intensidad de la demanda.
Ecuación No. 9: Expectativas de aceleración de los precios

\[
\text{AEP}_t = 51.68284 + 0.1173701 \text{DP}_t - 3.373238 \text{DP}_{t-1} \\
(2.282298) \quad (0.1575993) \quad (-4.760663)
\]

\[+ 0.5777397 \text{PAT}_t + 87.11960 \text{DS} + 0.2089805 \text{DCP}_t \\
(3.203086) \quad (0.4881822) \quad (0.8340471)
\]

\[+ 0.2112992 \text{AEP}_{t-1} \]

\[R^2 = 0.636\]

\[D-W = 1.497948\]

Nuevamente resulta difícil racionalizar el patrón de signos para los coeficientes de \(\text{DP}_t\) y \(\text{DP}_{t-1}\), teniendo en cuenta que se trata de cambios en el muy corto plazo. El coeficiente de \(\text{PAT}\) es significativo y el signo es correcto. Los demás coeficientes son no significativos pero los signos son correctos.

Ecuación No. 10: Intensidad de la Demanda

Por razones similares a las presentadas en el caso de la ecuación para \(\text{INV}\), en esta ecuación se aplicó el procedimiento de Hatanaka con los
siguientes resultados:

\[
\begin{align*}
DEM_t &= 31.89281 - 0.3209358 UCI_t - 0.1425083 PAT_t \\
 & \quad (2.5566059) \quad (-2.004166) \quad (-7.412239) \\
+ & 0.3465619 DEMESP_t + 0.37577368 DEM_{t-1} - 0.04293385 GX_{t-3} \\
 & \quad (4.524640) \quad (4.026302) \quad (-0.7924848) \\
\bar{R}^2 &= 0.9711; \quad D-W = 2.3740
\end{align*}
\]

Teniendo en cuenta lo arriba dicho sobre la posible alta correlación entre DEM y DEMESP no es sorprendente que los coeficientes de DEMESP_t y DEM_{t-1} sean altamente significativos y con signo positivo. La interpretación de DEM como intensidad de la demanda se ve debilitada por el signo y el carácter no significativo del coeficiente de GX_{t-3}. Pero, por otra parte la interpretación alternativa, de acuerdo con la cual DEM representaría un juicio acerca de la capacidad instalada no cuadra con los signos de UCI_t y PAT_t. El signo de PAT es también contrario al esperado si se interpreta DEM en el primer sentido señalado.

Ecuación No. 11: Demanda. Esperada

\[
\begin{align*}
DEMESP_t &= -13.97659 + 0.7518974 DEM_t + 0.3351966 DEM_{t-1} \\
 & \quad (4.018911) \quad (2.920072) \quad (1.491884) \\
+ & 0.03631318 GX_t \\
 & \quad (0.3266678) \\
\bar{R}^2 &= 0.878; \quad D-W = 1.257
\end{align*}
\]
Aparte de la constante, sólo el coeficiente de DEM$_t$ es significativo y el signo es, además, el esperado. El signo de DEM$_{t-1}$ coincide con lo esperado pero el coeficiente es no significativo. El coeficiente de GX tiene el signo correcto pero no es significativo, lo cual debilita la interpretación de DEMESP como medida de la demanda esperada.

Ecuación No. 12: Desviación del Índice de Producción Industrial Respecto de su Tendencia

\[
\text{DESVQ}_t = -2.948020 - 0.04251728 \text{PAT}_{t-1} + 0.4863914 \text{QESP}_{t-3} \\
- (0.8872988) \quad (-0.5161288) \quad (4.967461)
\]

\[- 0.5619785 \text{QESP}_{t-4} + 0.2407228 \text{CLI}_{t-5} + 0.5614271 \text{DPED}_t \\
- (-6.656832) \quad (2.680399) \quad (7.912128)
\]

\[- 0.3706792 \text{DPED}_{t-1} - 0.1019306 \text{DGX}_{t-4} - 0.23795 \text{DGX}_{t-5} \\
- (-3.035227) \quad (-0.8940240) \quad (-1.861089)
\]

\[+ 0.9632742 \text{DESVQ}_{t-1} \quad (24.2392)
\]

\[R^2 = 0.9454
\]

\[D-W = 2.01225
\]

Si bien el ajuste de la regresión es muy bueno y es la única ecuación
que no adolece de autocorrelación ni de heteroscedasticidad, el rasgo más preocupante de los coeficientes estimados es el hecho de que cinco de ellos exhiben signos contrarios a los previstos en la etapa de especificación, a saber, los coeficientes de \(\text{PAT}_t\), \(\text{QESP}_t\), \(\text{DPED}_t\), \(\text{DGX}_t\), y \(\text{DGX}_t\). Además los coeficientes de \(\text{PAT}_t\), \(\text{DGX}_t\) y \(\text{DGX}_t\) no son significativamente distintos de cero. Pero de otro lado, hay que abonarle al modelo que algunas de las variables explicativas claves (\(\text{QESP}_t\), \(\text{CLI}_t\), \(\text{DPED}_t\)) resultan significativas y con el signo correcto.

Ecuación No. 13: Crecimiento en el empleo

\[
\begin{align*}
\text{DN}_t & = 0.00011829 \: \text{DESVQ}_t - 0.422642 \: \text{DS}_t + 0.06940807 \\
& (1.634174) \quad (-3.040531) \quad (0.5366839) \\

\text{DS}_{t-1} & + 0.0001985 \: \text{DNESP}_{t-3} + 0.0001965 \: \text{DNESP}_{t-3} + 0.00004746 \: \text{UCI}_t \\
& (1.096943) \quad (1.118453) \quad (2.028727) \\

R^2 & = 0.3896 \\
D-W & = 0.80714082
\end{align*}
\]

El coeficiente de \(\text{DESVQ}_t \) tiene el signo correcto pero es no significativo. Los coeficientes de \(\text{DS}_t \) y \(\text{DS}_{t-1} \) son, respectivamente significativo y
no significativo. El primero tiene el signo esperado a la luz de la teoría y el segundo el signo equivocado. Los coeficientes de D\(\text{NESP}_t\) y D\(\text{NESP}_{t-2}\) tienen el signo correcto pero son no significativos. Finalmente, la hipótesis según la cual el empleo crece con el nivel de utilización de la capacidad instalada se ve confirmada.

Ecuación No. 14: Crecimiento en el salario nominal

\[
\begin{align*}
\text{DS}_t &= 0.0002725 \text{TINFLESP}_t - 0.3059634 \text{DN}_t + 0.6209459 \\
&\quad (3.309069) \quad (-2.532191) \quad (6.06412)
\end{align*}
\]

\[
\text{DS}_{t-1} \quad \frac{-2}{R} = 0.501; \quad \text{D-W} = 2.047
\]

Se confirma la hipótesis según la cual la tasa de inflación esperada contribuye a determinar la tasa de crecimiento de los salarios. El coeficiente de DN es significativo pero el signo es contrario al que se esperaba. Aparentemente, está reapareciendo la relación de proporcionalidad inversa de la ecuación 13 entre el incremento del salario y la disminución de la demanda de trabajo. Este resultado habla a favor de una hipótesis de acuerdo con la cual la curva de oferta de trabajo sería altamente elástica; pero no se podría ir más allá de la conjetura, si se tiene en cuenta que los resultados pueden estar sesgados por el hecho
de que para una parte sustancial del período muestral, el empleo estuvo descendiendo.

Finalmente, el coeficiente de DS_{t-1} es significativo y positivo, indicando relación de autorregresión considerable para la serie DS.
6. EL MIPI COMO HERRAMIENTA DE PREDICCION

Como es bien sabido, una vez que se han estimado los parámetros de cualquier modelo estructural, podemos usar éste como instrumento de predicción, siempre y cuando se conozcan, o se supongan, los valores de las variables predeterminadas en el periodo para el cual se va a llevar a cabo la predicción.

A este propósito debe siempre tenerse en mente que toda predicción es condicional a los valores dados a (o asumidos por) las variables exógenas, a la constancia de los parámetros estimados a lo largo del tiempo y al cumplimiento de la condición de ceteris paribus con base en la cual se estimó el modelo. Puesto que la estricta observancia de estos supuestos no se cumple en ninguna situación de la vida real, toda predicción es, por su naturaleza misma inexacta y de lo que se trata es de minimizar la imprecisión.

El desempeño de un modelo econométrico en las tareas de predicción se juzga, normalmente, sobre la base de la diferencia entre predicciones y realizaciones. En la medida en que es menor la desviación entre los valores pronosticados y los valores realizados de las variables dependientes, es mejor el desempeño del modelo en predicción.
De los varios métodos disponibles para medir la precisión de los pronósticos obtenidos a partir de un modelo econométrico se escoge aquí la medida propuesta por Theil (1966) bajo la denominación de coeficiente de desigualdad.

Los valores que el coeficiente de desigualdad toma yacen entre cero e infinito. En la medida en que el valor es más pequeño, es mejor el desempeño del modelo en predicción. Cuando $U = 0$ se tiene el caso de previsión perfecta. Cuando $U = 1$ el modelo predice que no hay cambios en el valor de la variable objeto del pronóstico. Si $U > 1$ la capacidad predictiva del modelo es peor que la dada por la predicción "ingenua" de que no habrá cambio en la variable.

Otra medida alternativa de la exactitud de las predicciones es la raíz del cuadrado del error promedio (RCEP). Sin embargo, como lo señalan Doan y Litterman (1984), el estadístico U de Theil tiene varias ventajas sobre la RCEP para la comparación de la capacidad predictiva de distintos modelos: U es un número puro, que no depende de las unidades de medida de las variables mientras que, por el contrario, la RCEP depende de las unidades de medida de los datos; además, como ya se mencionó, U proporciona, de una manera inmediata, la posibilidad de establecer la comparación de las predicciones con las derivadas del supuesto "ingenuo" de la ausencia de cambio a lo largo del tiempo.
De acuerdo con lo acostumbrado cuando de hacer pruebas de predicción se trata, se llevaron a cabo ejercicios de pronóstico al interior de la muestra y por fuera de la muestra. A continuación se informan los resultados de ambos tipos de prueba. Siguiendo la sugerencia de los más destacados especialistas en materia de encuestas de opinión 44/ según la cual no debería esperarse un buen desempeño predictivo de los indicadores y modelos basados en las variables de opinión más allá de unos pocos meses hacia el futuro, la predicción dentro de la muestra se hace, mes por mes, hasta un horizonte máximo de cuatro meses y la predicción por fuera de la muestra para un horizonte máximo de cinco meses.

Es importante advertir que la predicción se hace exclusivamente con base en el modelo estructural, lo cual constituye una prueba más exigente de la capacidad predictiva. Finalmente, las pruebas se refieren a las predicciones puntuales de los valores de las variables endógenas y no a la predicción de intervalos.

44/ Ver, por ejemplo, Anderson y Strigel (s. f.) y Lindlbauer y Strigel (1983).
6.1 Predicción al interior de la muestra

La predicción al interior de la muestra se lleva a cabo para el período que va de mayo a agosto de 1984, mes por mes. Los valores pronosticados por el modelo aparecen hacia el final del listado de computador identificado con la etiqueta NUEVO CB. OUT. En un cuadro posterior, se encuentran los estadísticos de las predicciones, a saber, el error promedio y su valor absoluto, la RCEP y el coeficiente U de Theil.

Como puede observarse, el 57% de las predicciones (32 de 56) obtenidas a partir del MIPI son superiores a las derivadas del supuesto de no cambio en las variables. Este resultado se compara favorablemente con, por ejemplo, el ya clásico modelo 1 de Klein y Goldberger en el cual, de acuerdo, con la prueba hecha por Christ (1956), 42% de los pronósticos resultaron ser superiores a la predicción ingenua.

Para la ecuación que más nos interesa, a saber, la de la desviación del Índice de Producción Industrial respecto de su tendencia, se observa que tres de las cuatro predicciones superan las del esquema ingenuo.

Otra propiedad del modelo importante de evaluar es la capacidad de pr_
decir adecuadamente la dirección de cambio de las variables. En este aspecto, el desempeño es aún mejor, como, por supuesto, debería esperarse: 67% (o sea 2/3 partes) de las predicciones resultaron confirmadas. En lo que toca a la desviación del Indice de Producción Industrial respecto de su tendencia, en todos los casos los pronósticos resultaron aceptados.

6.2 Predicción por fuera de la muestra

El ejercicio de prueba de la capacidad predictiva del MIPI, por fuera de la muestra se llevó a cabo para el período septiembre de 1984-enero de 1985. No hubo ningún inconveniente en estimar los pronósticos por cuanto se dispuso de los valores de todas las variables exógenas para el período en cuestión. Sin embargo, por carecer de los valores realizados en enero de 1985 para una parte de las variables endógenas, no se pudo llevar a cabo la comparación entre unos y otros para el mes mencionado.

Si se juzga por el porcentaje de pronósticos con coeficiente U menor que uno (37 de 66, es decir, 56%) el desempeño del MIPI por fuera de la muestra es esencialmente el mismo que el encontrado al interior de la muestra.
Los valores pronosticados por el modelo para esta prueba de predicción por fuera de la muestra pueden encontrarse en el listado de computador NUEPRED. OUT, hacia el final del mismo.

6.3 Conclusión

Los resultados de las pruebas de predicción aplicadas al MIPI hacen posible concluir que el modelo es un instrumento apropiado de predicción de los desarrollos a corto plazo (cuatro a cinco meses) en el sector industrial de la economía.

Aiginger, K (1977): The Use of Survey Data for the Analysis of Business Cycles, CIRET-Studies, Nr. 24, Munich.

Autor Colectivo (1982), Métric, une modelisation de l' economic française, INSEE.

FEDESARROLLO (1985), "Informe Mensual No. 3 sobre el Desarrollo del Estudio 'Monitoría del Sector Real', Anexo de Comunicación dirigida al Departamento Nacional de Planeación, Noviembre, Bogotá.

G. Katona (1960), Das Verhalten der Verbraucher und Unternehmer, Tubingen.

J. Leyland (1977), Qualitative Indicators in International Business Cycles Analysis, 43th CIRET Conference, Munich.

A. Melo (1986), Monitoría del Sector Real. Informe de Avance No. 5, FEDESA-Rrollo, Bogotá, febrero, (fotocopia).

A. Piatier (1979), Business Cycles Surveys: Their Utilization for Forecasting, CIRET, 14th Conference, Lisboa.

A. C. Pigou (1927), Industrial Fluctuations, 1a. Edición, Londres.

G. Schmolders (s. f.), Ökonomische Verhaltensforschung, Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen, No. 71, Colonia-Opladen.

W. H. Strigel (1962), Business Indicators derived from Qualitative Data, CIRET Studien, No. 19.

E. J. Van der Lynden (1977), *Principal Component Analysis with Data from the EEC Entrepreneurial and Consumer Surveys*, 13th CIRET Conference, Munich.

APENDICE 1

Transformaciones realizadas sobre los datos originales

1. **Desestacionalización de las variables**

 Se llevó a cabo una desestacionalización de las 13 variables más importantes del modelo mediante el método del promedio aritmético móvil, de acuerdo con la siguiente fórmula:

 \[X_t^* = \frac{X(t-1) + X(t) + X(t+1)}{3} \]

 donde \(X_t^* \) = promedio móvil

 \(X_t = \) valor original de \(X \) en \(t \)

 Se escogió el método de la media aritmética teniendo en cuenta que, de acuerdo con Gourieroux y Monfort (1983), es el mejor procedimiento para anular la estacionalidad, los coeficientes son simples, el poder de reducción es bueno y no afecta negativamente la tendencia de la serie correspondiente.

2. **Creación de la variable DESVQ**

 La desviación del Índice de Producción Industrial respecto de su tendencia histó-
rica se derivó de la siguiente manera:

i) Se calculó la tasa de crecimiento media del Índice de Producción Industrial del DANE a precios corrientes para el período de enero de 1980 a diciembre de 1984.

ii) Esta tasa de crecimiento promedio (2.09% mensual) se aplicó a partir de enero de 1980 para calcular la serie TRENDQ que representa la evolución del índice de acuerdo con la tendencia histórica.

iii) Se definió y calculó DESVQ como la diferencia entre el Índice observado y el valor correspondiente de TRENDQ.

3. Creación de la serie para la tasa de inflación esperada

Se ajustó una ecuación de autorregresión para la tasa de inflación observada (TINFL) en función de los tres primeros rezagos con los siguientes resultados:

\[TINFL_t = -0.1679096 + 1.473829 \cdot TINFL_{t-1} - 0.9023931 \cdot TINFL_{t-2}
+ 0.4261073 \cdot TINFL_{t-3} \]

\[R^2 = 0.9681 \]

\[D-W = 2.07441 \]
Con base en el buen ajuste que ofrece esta regresión se definió la variable TINFLESP mediante la siguiente ecuación:

\[TINFLESP_t = -0.16 + 1.47 \times TINF_t^{-1} - 0.9 \times TINF_t^{-2} + 0.42 \times TINF_t^{-3} \]

Utilizando esta ecuación se construyó la serie para TINFLESP.

4. Creación de las series de otras variables

Dos de las variables del modelo se calculan como tasas de crecimiento proporcional (o tasas de crecimiento compuestas continuas). Ellas son DS y DN. Nótese que en el listado de computador, en el caso de estas variables se usa la misma notación para la variable original y para la variable transformada. Por otro lado, tégase presente que el método de cálculo difiere para cada una de ellas. La tasa de crecimiento proporcional del empleo en la industria se calcula mediante el procedimiento de tomar las diferencias de primer orden de los logaritmos naturales de los niveles de la variable. Por contraste, la tasa de crecimiento proporcional del salario nominal, DS, se calcula mediante la fórmula \((DS (t) - DS (t - 1)) / DS (t - 1)\) donde el DS de esta fórmula es el nivel del salario nominal.
La variable cambio en el gasto exógeno es, simplemente, la primera diferencia

$GX(t) - GX(t-1)$.
APÉNDICE 2

LISTA DE VARIABLES

La lista incluye no sólo las variables del MIPI mismo sino todas aquellas que aparecen en los listados de computador anexos a este trabajo. Las variables aparecen en el mismo orden en que se encuentran en dichos listados.

DQ = Opinión acerca del incremento en la producción en el período más reciente (t - 1, t) comparada con el período previo.

INV = Juicio acerca del estado de los inventarios.

DPED = Flujo de nuevos pedidos en el último mes.

DPAT = Cambio en el nivel de pedidos por atender en el último mes.

PAT = Nivel de pedidos por atender.

DP = Incremento en los precios netos de venta en el último mes.

QESP = Expectativas de producción a tres meses vista.

AEP = Expectativas de aceleración en el crecimiento de los precios netos de venta a tres meses vista.

DNESP = Planes de enganche de empleados en los tres meses siguientes.

DEM = Opinión acerca de la intensidad de la demanda.
DEMESP = Demanda esperada en los próximos doce meses.
CLI = Clima de los Negocios.
CBO = Cuellos de botella del lado de la oferta.
CB = Cuellos de botella totales.
UCI = Nivel de utilización de la capacidad instalada.
DS = Tasa de crecimiento proporcional del salario nominal.
DSR = Tasa de crecimiento proporcional del salario real.
N = Índice del empleo en la industria manufacturera.
QI = Índice de Producción Industrial del DANE.
DPIN = Tasa de crecimiento del índice de precios de los insumos nacionales.
DPII = Tasa de crecimiento del índice de precios de los insumos importados.
DESVQI = Desviación del Índice de Producción Industrial respecto de su tendencia; calculada sin desestacionalizar el índice.
DCP = Opinión de los empresarios acerca de la tendencia en los costos de producción durante los últimos tres meses.
TINT = Tasa de interés promedio de los CDT de bancos y corporaciones financieras.
IPM = Índice de precios al por mayor para productos del sector industrial.
TINFL = Tasa de inflación.
IVM = Índice de ventas del comercio en general.
GX = Gasto exógeno macroeconómico.
TRENDQ = Tendencia histórica del Índice de Producción Industrial.
PRXGAN = Variable sustitutiva de las ganancias.
DGX = Cambio en el nivel de gasto exógeno en el último mes.
TINFLESP = Tasa de inflación esperada.
APÉNDICE 3

Acerca de los listados de computador que se adjuntan

Al presente trabajo se adjuntan tres listados de computador que se identifican por las etiquetas NUEPRED. OUT, NUEVOCB. OUT y NUEVO 6. OUT.

Todos los listados contienen los resultados de la estimación de la segunda etapa del método de MC2E.

El listado NUEVO 6. OUT contiene el programa que calcula la matriz estimada de varianzas y covarianzas de los coeficientes estimados; la corrección que de ella se hace aplicando el método de White; la aplicación del estimador consistente resultante al propósito de recalcular los estadísticos t y los errores típicos y, finalmente, la prueba de hipótesis para la significación de conjunto de los coeficientes de la regresión (con la hipótesis nula, H_0: todos los coeficientes son cero). Esto, para cada una de las ecuaciones.

El listado NUEVOCB. OUT incluye los resultados de la prueba de predicción al interior de la muestra. También contiene los resultados de la primera etapa de estimación del modelo mediante el método de MC2E.

El listado NUEPRED. OUT contiene los resultados de la prueba de predicción por fuera de la muestra.
POR FAVOR RESPONDA PRONTO ESTE CUESTIONARIO

CUESTIONARIO A

FUNDACION PARA LA EDUCACION SUPERIOR Y EL DESARROLLO
ENCUESTA DE OPINION EMPRESARIAL – SECTOR INDUSTRIAL

Su información será tratada en formastrictamente confidencial. Por favor, responda a todas las preguntas marcando las casillas correspondientes.

Escribe el nombre del producto o línea de producción sobre el cual se informa (en adelante designado como X):

EVALUACION DEL MES DE ENERO	PLANES Y EXPECTATIVAS	14. Al finalizar Enero nuestros existencias de productos terminados de X sin vender eran
1. En lo que respecta al producto X consideramos que la situación económica actual de nuestra empresa es	8. Descartando los cambios estacionales normales se puede prever que en los próximos tres meses nuestra producción de X tenderá a aumentar	mayores
buena	permanecer aproximadamente igual	aproximadamente iguales
aceptable (normal para esta época y del año)	disminuir	menores
malo		que a final del mes anterior
		más que suficientes
		justas suficientes
		insuficientes
2. En comparación con el mes anterior nuestra actividad productiva en X durante Enero fue	9. Se puede prever que en el curso de los próximos tres meses nuestros precios netos de venta para X en el país aumentarán parcialmente, más que en el trimestre anterior (noviembre - enero) lo mismo que en el trimestre anterior menos que en el trimestre anterior Note: Nuestros precios netos de venta en el país para X	
más intensa		
aproximadamente la misma		
más débil		
Al hacer la comparación excluimos los cambios que obedecen a causas normales en la producción, tales como vacaciones, días festivos y trabajos periódicos de mantenimiento.		
3. Al finalizar este mes nuestras existencias de productos terminados de X sin vender eran		
disminuida pequeñas		
suficientes para la época del año		
disminuida grandes		
no mantenemos existencias		
4. En comparación con el mes anterior, los pedidos de X que recibimos del interior y el exterior durante Enero		
aumentaron		
no cambiaron		
disminuyeron		
5. A finales de este mes tendremos por atender un volumen de pedidos (del interior y del extranjero) de X		
mayor		
aproximadamente igual		
menor		
que a finales del mes anterior		
6. Consideramos que el volumen actual de pedidos de X que tenemos por atender es		
alto		
normal		
bajo		
7. Durante el mes de Enero nuestros precios netos de venta en el país para X		
aumentaron		
no cambiaron		
disminuyeron		

<table>
<thead>
<tr>
<th>PARA CORRESPONDENCIA FUTURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOMBRE DE LA EMPRESA</td>
</tr>
<tr>
<td>PERSONA QUE RESponde</td>
</tr>
<tr>
<td>CARGO</td>
</tr>
<tr>
<td>DIRECCION Y TELEFONO</td>
</tr>
<tr>
<td>CIUDAD Y FECHA</td>
</tr>
</tbody>
</table>

POR FAVOR UTILIZAR EL RESPALDO PARA ESCRIBIR SUS OBSERVACIONES O ACLARACIONES
VALUACION DEL MES DE FEBRERO

En lo que respecta a producto X consideramos que la situación económica actual de nuestra empresa es:

- buena
- aceptable (normal para esta época del año)
- mala

En comparación con el mes anterior nuestra actividad productiva en X durante Febrero fue:

- más intensa
- aproximadamente la misma
- más débil

Al hacer la comparación excluimos los cambios que obedecen a causas normales en la producción, tales como vacaciones, días festivos y trabajos periódicos de mantenimiento.

Al analizar este mes nuestras existencias de productos terminados de X sin vender eran:

- demasiado pequeñas
- suficientes dada la época del año
- demasiado grandes
- no mantenemos existencias

En comparación con el mes anterior, los pedidos de X que recibimos del interior y del exterior durante Febrero fueron:

- aumentaron
- no cambiaron
- disminuyeron

A finales de este mes teníamos por atender un volumen de pedidos (del interior y del exterior) de X:

- mayor
- aproximadamente igual
- menor

que a finales del mes anterior

PLANES Y EXPECTATIVAS

8. Descontando los cambios estacionales normales se puede prever que en los próximos tres meses nuestra producción de X tendrá:

- aumentar
- permanecer aproximadamente igual
- disminuir

9. Se puede prever que en el curso de los próximos tres meses nuestros precios netos de venta (para X) en el país aumentarán porcentualmente:

- más que en el trimestre anterior (Diciembre - Febrero)
- lo mismo que en el trimestre anterior (Marzo - Mayo)
- menos que en el trimestre anterior

Nota: Nuestros precios netos de venta en el país para X:

a. Aumentaron en el trimestre pasado (Diciembre - Febrero)
 SI NO
b. Aumentarán en el próximo trimestre (Marzo - Mayo)
 SI NO

10. Se puede prever que en el curso de los próximos tres meses nuestras exportaciones de X (en cantidad) habrán de:

- aumentar
- permanecer aproximadamente igual
- disminuir
- no exportamos X

11. Descontando las fluctuaciones estacionales normales, consideramos que en lo referente a X nuestra situación económica en los próximos seis meses tendra a ser:

- más favorable
- aproximadamente la misma
- más desfavorable

en comparación con la situación actual

PREGUNTAS ESPECIALES

12. Con base en nuestro volumen actual de pedidos (o situación actual de la demanda) consideramos que nuestra capacidad instalada para producir X es:

- más que suficiente
- suficiente
- insuficiente

13. Con base en el ritmo de pedidos (o demanda) que esperamos para los próximos doce meses consideramos que nuestra capacidad instalada actual para la producción de X es:

- más que suficiente
- suficiente
- insuficiente

Para Correspondencia Futura

NOMBRE DE LA EMPRESA

Persona que responde

Cargo

Dirección y Teléfono

Ciudad y Fecha

POR FAVOR UTILIZAR EL RESPALDO PARA ESCRIBIR SUS OBSERVACIONES O ACRABACIONES
CUESTIONARIO C

FUNDACION PARA LA EDUCACION SUPERIOR Y EL DESARROLLO ENCUESTA DE OPINION EMPRESARIAL - SECTOR INDUSTRIAL

Su información será tratada de forma estrictamente confidencial. Por favor, responda a todas las preguntas marcando las casillas correspondientes.

Mes sobre el cual se informa: **DICIEMBRE 1983**
Razonamos devolver el cuestionario antes del 15 de Enero a: FEDEARROLLO Apartado Aéreo 20513 - Bogotá.

Escriba el nombre del producto o línea de producción sobre el cual se informa (en adelante designado como **X**):

EVALUACION DEL MES DE DIC.

1. En lo que respecta al producto **X** consideramos que la situación económica actual de nuestra empresa es:
 - buena
 - aceptable (normal para esta época del año)
 - mala

2. En comparación con el mes anterior nuestra actividad productiva en **X** durante Diciembre fue:
 - más intensa
 - aproximadamente la misma
 - menos intensa
 - más débil

3. Al hacer la comparación excluye los cambios que obedecen a causas normales en la producción, tales como vacaciones, días festivos y trabajos periódicos de mantenimiento.

4. Al finalizar este mes nuestras existencias de productos terminados de **X** sin vender eran:
 - demasiado pequeñas
 - suficientes dada la época del año
 - demasiado grandes
 - no mantenemos existencias

5. En comparación con el mes anterior, los pedidos de **X** que recibimos del interior y del extranjero durante Diciembre aumentaron
 - no cambiaron
 - disminuyeron

6. A finales de este mes tenemos por atender un volumen de pedidos (del interior y del extranjero) de **X**
 - mayor
 - aproximadamente igual
 - menor

7. A finales del mes anterior
 - más favorable
 - aproximadamente la misma
 - más desfavorable

8. Planeamos que el volumen de pedidos de **X** que tenemos por atender es:
 - alto
 - normal
 - bajo

9. Durante el mes de Diciembre nuestras precios netos de venta en el país para **X** aumentaron
 - no cambiaron
 - disminuyeron

PLANES Y EXPECTATIVAS

8. Descontando los cambios estacionales normales, se puede prever que en los próximos tres meses nuestra producción de **X** tenderá a:
 - aumentar
 - permanecer aproximadamente igual
 - disminuir

9. Se puede prever que en el curso de los próximos tres meses nuestros precios netos de venta (para **X**) en el país aumentarán porcentualmente:
 - más que en el trimestre anterior (Octubre-Diciembre)
 - lo mismo que en el trimestre anterior
 - menos que en el trimestre anterior

Nota: Nuestros precios netos de venta en el país para **X**
 a. Aumentarán en el trimestre pasado (Octubre-Diciembre)
 b. Aumentarán en el próximo trimestre (Enero-Marzo)
 - SI
 - NO

10. Se puede prever que en el curso de los próximos tres meses nuestras exportaciones de **X** (en cantidad) habrán de:
 - aumentar
 - permanecer aproximadamente igual
 - disminuir
 - no exportamos X

11. Descontando las fluctuaciones estacionales normales, consideramos que (en lo referente a **X**) nuestra situación económica en los próximos seis meses tendra a ser:
 - más favorable
 - aproximadamente la misma
 - más desfavorable

 En comparación con la situación actual

PREGUNTAS ESPECIALES

12. Con base en nuestro volumen actual de pedidos (la situación actual de la demanda) consideramos que nuestra capacidad instalada para producir **X** es:
 - más que suficiente
 - suficiente
 - insuficiente

13. Con base en el ritmo de pedidos (la demanda) que esperamos para los próximos doce meses consideramos que nuestra capacidad instalada actual para la producción de **X** es:
 - más que suficiente
 - suficiente
 - insuficiente

14. Descontando las fluctuaciones estacionales normales, se puede prever que en los próximos tres meses el número de personas empleadas en la producción de **X** habrá de:
 - aumentar
 - permanecer aproximadamente igual
 - disminuir

15. En la actualidad hemos tenido impedimentos para desarrollar nuestra actividad productiva con respecto a **X**
 - si
 - no

 En caso afirmativo señale el impedimento más importante:
 - a. capital de trabajo insuficiente
 - b. escasez de materias primas
 - c. precios de materias primas muy altos
 - d. falta de maquinaria
 - e. otro (Especifique)

16-17. Durante el último trimestre (Octubre-Diciembre) exportamos una cantidad de **X**
 - mayor
 - aproximadamente igual
 - menor

18. Que el trimestre anterior:
 - 17. que en el mismo trimestre del año pasado
 - no exportamos X

NOMBRE DE LA EMPRESA

PERSONA QUE RESponde

CARGO

DIRECCION Y TELEFONO

CIUDAD Y FECHA

POR FAVOR UTILIZAR EL RESPALDO PARA ESCRIBIR SUS OBSERVACIONES O ACLARACIONES