A Fiscal Rule to achieve debt sustainability in Colombia*†

November, 2020

María Angélica Arbeláez, Fedesarrollo
Miguel Benítez, Fedesarrollo
Roberto Steiner, Banco de la República
Oscar Valencia, Inter-American Development Bank

Abstract

In order to enhance fiscal sustainability and regain the “investment grade” credit rating lost in 1999, Colombia implemented a fiscal rule (FR) in 2011 on the Central Government’s structural balance. Although investment grade was attained, public debt has increased continuously and is now expected to exceed 60% of GDP in 2020 as a result of the COVID-19 pandemic. We argue that although the FR has proved to be an important tool to promote fiscal discipline, it can and should be improved. We undertake several quantitative exercises in support of reforming the current FR so that it incorporates a debt anchor. First, using the synthetic control approach we show that, notwithstanding the observed increase in debt, the situation would have been worse in the absence of the FR. In the same vein, we show that despite the decline in public investment observed since the oil shock in 2014, the contraction would also have occurred in the absence of the fiscal rule. We then estimate a prudent debt level using a regime-change approach and the IMF’s buffer-risk methodology and simulate the trajectory of the FR in the medium term, incorporating a debt anchor and conditioned on different growth scenarios and additional expenditure related with the pandemic. We show that the prudent debt level should not exceed 48% of GDP and that in order to achieve this level in the medium term, a policy mix increasing fiscal revenues to 17.8% of GDP (from 15.5% during 2016-2019) and reducing primary expenditure to 15% (from 16% during 2016-2019) is required. Along with including a debt anchor, FR’s performance would also benefit from changes in its institutional design.

JEL classification: E37, E62, H42, H30, H60

Key words: Fiscal rules, public debt, synthetic control method, debt anchor.

* This paper is a preliminary version of a project on “Fiscal Rules and the Behavior of Public Investment in Latin America and the Caribbean” sponsored by the IDB’s Research Department and undertaken under the technical coordination of Alejandro Izquierdo, Eduardo Cavallo, Martin Ardanaz, Teresa Ter-Minassian and Carlos Vegh, whose comments we greatly appreciate, as well as those from Luis Fernando Mejía. We received able research assistance from Sebastián Higuera and Sebastián Bernal. Corresponding author: María Angélica Arbeláez at marbelaez@fedesarrollo.org.co

† Opinions expressed in this paper do not represent the views of Banco de la República or its Board of Directors, nor the views of the IDB, its Board of Directors or the countries that they represent. When this project began, Steiner was at Fedesarrollo.
1 Introduction

During 1980-1995, indebtedness of Colombia’s Central Government (CG) remained low and stable in comparison to other countries in the region. The increase in the debt burden in the second half of the 90s became a source of concern, giving rise to important institutional reforms, first to sub-national government finances and in 2011 with the establishment of a fiscal rule (FR) for the CG. In contrast to what was expected when the FR was established, CG indebtedness has risen significantly; the debt-to-GDP ratio hovers around 50%, having doubled in the last decade, and is expected to exceed 60% in 2020, as a consequence of the COVID-19 crisis. On the other hand, CG investment was dynamic up until 2014, after which it has declined, coinciding with the decline in oil prices.

The possibility of reforming the FR is now openly discussed. The main topic of concern is the rise in the debt burden, with many analysts taking issue with a rule that targets the structural balance, with no anchor on the debt level (see Escobar, 2019 and Clavijo, 2016). Another topic being raised is the need to strengthen the independence and technical capabilities of the FR’s consultative committee and to incorporate explicit and transparent escape clauses in order to prevent the use of discretionary measures that compromise credibility, as might have happened recently when the fiscal stance was relaxed in order to absorb the Venezuelan migration shock (Perry, 2019).

In that vein, this paper assesses the functioning of the FR with emphasis on its compliance and analyzes the factors that have influenced debt dynamics. Through different quantitative exercises, we explore alternative scenarios of the FR with debt anchor. Our main goal is to provide technically grounded recommendations in order to improve the current FR framework and ensure future compliance.

The paper is organized as follows. After this introduction, the second chapter describes the historical evolution of fiscal frameworks aimed at pursuing fiscal sustainability at the subnational and national levels and explains in detail the current FR, focusing on compliance, debt dynamics, public investment performance and budgetary & tax restrictions. The third chapter presents several quantitative approaches, seeking to (i) evaluate the current FR, using the Synthetic Control method; (ii) estimate a prudent debt anchor, using a the regime-change approach and the IMF’s buffer-risk methodology and (iii) simulate fiscal balances and debt trajectories for the next decade,
consistent with accomplishing medium-term debt targets, conditioned on different growth scenarios and additional expenditure in the short-term related with the COVID-19 emergency. To this end, we use a Neo-Keynesian General Equilibrium Model. The fourth chapter provides conclusions and policy recommendations.

2 The road leading to a fiscal rule for the Central Government

2.1 Rules at the sub-national level

Fiscal rules were first implemented for sub-national governments, in response to the significant rise in their indebtedness during the 90s (Figure 1), a result of the decentralization process derived from the 1991 Constitution. The 1997 so-called “Ley de Semáforos” (“Traffic light law”) stipulated that their indebtedness could not exceed their payment capacity. It introduced liquidity-based and solvency-based metrics, and established ceilings on them. This was complemented with Law 549 of 1999 dealing with pension liabilities and Law 550 allowing subnational governments to enter into debt-restructuring agreements. Subsequently, Law 617 of 2000 restricted current expenditure growth—establishing limits according to population—and stipulated that current expenditure must be financed solely out of current income. It also developed a bailout plan in case of financial difficulties. Finally, in 2003 the “Ley de Responsabilidad y Transparencia Fiscal” mandated sub-national entities to include in their budget fiscal targets that ensure debt sustainability, limited the pledging of future revenues (“vigencias futuras”) and restricted CG bailouts.
This set of rules placed subnational governments’ finances on a sound footing and contributed to reducing indebtedness (Alonso, et al., 2006 and Chamorro and Urrea, 2016). Their current debt level is low (under 2% of GDP), even below the average for OECD countries (OECD, 2016).

2.2 Rules for the central government

At the CG level, the debt burden soared in the second half of the 90s and Colombia lost “investment grade” in 1999 (Figure 2). Regulations began to be drawn up with the 2003 “Ley de Responsabilidad y Transparencia Fiscal” which called for the CG to Congress a “Marco Fiscal de Mediano Plazo” (Medium Term Fiscal Framework, MFMP) which must contain an analysis of the economic situation, a 10-year projection of key macro indicators and an estimation of fiscal balances. Although this instrument is useful in guiding public finances, by itself is insufficient for ensuring sustainability, given that it does not establish mandatory targets for the primary balance¹.

¹ Moreover, establishing mandatory targets for the primary balance may not ensure debt sustainability if the growth rate and the cost of debt deviate significantly from the values projected when establishing the primary balance target.
In 2007 the Uribe administration convened a commission of experts to provide guidance on fiscal sustainability and the management of the ensuing oil boom. The commission recommended establishing a FR for the next five years (Botero, *et al*, 2007). Along the same lines, in 2008 the central bank proposed a rule for the CG consisting of targets for the primary structural balance with the purpose of facilitating a countercyclical fiscal policy stance (Lozano, *et al*, 2008).

Towards the end of the Uribe administration in 2010, the government formally proposed the adoption of a FR for the structural primary balance, aimed at (i) recovering the investment grade credit rating; (ii) achieving a sustainable level of public debt; and (iii) allowing a countercyclical fiscal policy stance.

2.3 The 2011 Fiscal Rule

At the beginning of the Santos administration (2011) the FR was approved by Congress, with some differences compared to those previously discussed. The rule targets the *structural balance* defined as the difference between total income and total expenditure, excluding the cyclical components of GDP and of oil revenues and any countercyclical expenditure\(^2\) (eq. 1-3).

\(^2\) The FR stipulates that the government may implement a countercyclical expenditure plan if the difference between potential GDP growth and effective growth is greater than 2 percentage points. Countercyclical expenditure cannot
\[Structural\ balance_t = Total\ balance_t - Cycle\ balance_t \quad (1) \]

\[Structural\ balance_t = (Total\ income_t - Total\ expenditure_t) - (Cycle\ income_t - Cycle\ expenditure_t) \quad (2) \]

\[Structural\ balance_t = (Total\ income_t - Cycle\ income_t) - (Total\ expenditure_t - Cycle\ expenditure_t) \quad (3) \]

This type of rule, common in countries where macroeconomic volatility is strongly associated with commodity exports (IMF, 2018a), seeks to reduce procyclicality of fiscal policy and facilitate macro stabilization. Its effectiveness largely hinges on the quality of assumptions regarding potential GDP growth and long-term commodity prices.

Along with the rule, the “Comite Consultivo de la Regla Fiscal (CCRF)” (Fiscal Rule Advisory Committee) was established. It reviews the methodology and definition of basic parameters required for the operation of the rule; it opines on the compliance report that the Government must submit to Congress and on the temporary suspension of the rule in the event of extraordinary events that compromise macroeconomic stability\(^3\). CCRF’s opinions are not binding.

The FR was incorporated in budgetary operations and works as follows:

- In the first quarter of the year, the MHCP presents to the CCRF the methodology and estimation of potential growth, output gap and long-term oil prices with which the structural and total balances are estimated. It also presents for CCRF’s validation a report on compliance with the FR for the previous year. In case of no compliance, the report must explain the reasons for the breach\(^4\).
- In June, the MHCP submits to Congress the compliance report —validated by the CCRF— along with the MFMP and a fiscal strategy that sets expenditure ceilings consistent with the FR targets. This expenditure ceiling is binding for the following year and indicative

\(^3\) The CCRF consists of 9 members: 3 deans of economics departments; 4 members of research centers and reputed consultants; and the 2 presidents of the economic affairs commissions of both chambers of Congress. Terms are for 3 years, extendable once. There are two external advisory groups, one for potential growth, one for long-term oil prices. All technical support staff is from the MHCP. It is important to highlight that in 2020 Decree 370 modified certain institutional aspects strengthening CCRF’s autonomy, by, for example, staggering the appointment of its members in such a way that a single government cannot appoint them all.

\(^4\) Since the FR was incorporated, the compliance report has always been validated by the CCRF.
thereon.

- On this basis, the Fiscal Policy Council (CONFIS)\(^5\) allocates the budget between investment and current expenditure. While the MHCP allocates current expenditure among ministries and other entities through the “Marco de Gasto de Mediano Plazo” (MGMP), the National Planning Department (DNP) allocates investment among sectors/entities\(^6\). The latter must have been included in the “Plan Nacional de Desarrollo” (PND), which each administration presents to Congress at the beginning of its 4-year term in office.

- Based on the MFMP, the MGMP and the POAI, in July the MHCP submits to Congress the annual budget. The total amount must be approved by September 15, the detailed composition by end November. Budget execution begins on January 1 of the next year.

2.3.1 Compliance with the fiscal rule

The FR law established a yearly declining path for the CG’s structural deficit. Starting from a 2.6% of GDP deficit in 2012, it called for a structural deficit of 2.3% of GDP or less in 2014, 1.9% or less in 2018 and of 1 or less in 2022. As of 2022, the deficit could not exceed 1% of GDP. Although not part of the FR, the documents supporting the 2011 law envisioned a continuous decline in debt in the absence of shocks, from 34% of GDP in 2012 to 25% in 2023.

Both the deficit and the public debt burden have increased substantially

Although until 2019 structural deficit targets were complied with every year and investment grade was regained in 2011, original expectations regarding the overall fiscal balance and the debt burden have not been meet. When the rule was first implemented, it was envisioned that every year until 2023 the structural deficit would be larger than the total deficit (i.e. the cyclical component would call for fiscal restraint). Unfortunately, assumptions regarding oil prices did not materialize (Figure 3). As a result, CG net debt has continuously increased, reaching 48.5% of GDP in 2019, in stark contrast with the outlook envisioned in 2012 (Figure 4).

\(^5\) Chaired by the Minister of Finance and convening DNP, Customs & Taxes, and a representative of the President.

\(^6\) To this end, the “*Plan Operativo Anual de Inversiones*” (POAI) -- the investment planning tool that seeks to prioritize the projects that will be incorporated in the budget-- is also prepared.
Due to the increase in the debt burden and the decline in revenue7, debt affordability (i.e. the share of debt service to fiscal revenues) has increased, from 12% in 2014 to 17% in 2018 (Figure 5).

7 As a result of the collapse in oil prices, CG’s revenue declined from 17% of GDP in 2013 to 14.8% in 2016.
In Figure 6 we report the results of an exercise that decomposes the change in the debt burden into its main components during the period in which the FR has been in operation. It can be seen that during the first years (2012-2014), oil revenues and economic growth contributed to a decline in debt, while the persistence of high non-oil primary deficits, interest payments and currency depreciation increased debt. During the period after the collapse in oil prices (2014-2016), the increase in debt was explained by significant currency depreciation, a fall in oil revenues and the persistence of high non-primary deficits. In recent years (2017-2019) the dynamics have been different, with the increase in debt explained mainly by higher interest payments.

8 We decompose the primary deficit between its oil and non-oil components, in order to pinpoint oil revenue’s contribution to the primary deficit and to debt. The sum of both components (oil revenues and non-oil primary deficit) is the net contribution of the primary deficit to the change in debt.

9 These estimation follows the methodology presented in Valencia, et al. (2018), with similar findings.
Figure 6. Decomposition of the debt-to-GDP ratio growth

Despite this increase in the debt burden and the persistent of high non-oil primary deficits, FR’s targets have been accomplished every year. This development has been the result of incorporating assumptions regarding potential growth and long-run oil prices that ex-post proved to be very optimistic. Indeed, Figure 7 shows that, except for 2013, growth turned to be well below potential growth projections in all MFMP between 2012 and 2018. In the same vein, the envisioned long-run oil price consistently exceeded “spot” prices. Although every year the long-run price was corrected, the revised price assumptions later proved to be too optimistic (Figure 8).

Source: Authors’ calculations based on MHCP.
On account of the oil shock and the long-term oil prices and long-term growth assumptions used, a significant cyclical fiscal imbalance ensued which, as shown in Figure 9, reached almost 2% of GDP in 2016. According to interviews conducted with former CCRF members, the flexibility in...
the estimation of the cyclical components of the rule might have been facilitated by the CCRF not having its own technical staff.

Figure 9. Cyclical income

(\% of \textit{GDP})

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{cyclical_income.png}
\caption{Cyclical income (\% of GDP)}
\end{figure}

\textit{Source:} Authors’ calculations based on Fiscal Rule Compliance Reports (2012-2018).

In addition, the absence of well-designed escape clause contributed to these results and made it difficult to accommodate, in a more transparent manner, exceptional and successive shocks – including the 2014 oil shock and the recent Venezuelan migration—, including a well-defined plan specifying the fiscal measures that would allow for the return to the rule's goals in the medium term.

On the other hand, fiscal policy continued to be procyclical after the implementation of the FR (Figure 10).\(^{10}\) This was due to the rapid growth in expenditure during the first years after the FR was implemented (2012-2014), financed to a great extent with the oil-boom revenues. Having saved only a small fraction of the oil windfall, it was not feasible to expand public expenditure once the economy slowed down in 2015. In fact, the increase in indebtedness during 2015-2019 did not expand public expenditure, but rather prevented it from declining even more.

\(^{10}\)These results are consistent with more sophisticated exercises, including those in Zapata & Vallejo (2019).
In spite of the fact that having complied with the FR’s structural balance targets did not prevent debt from increasing and did not diminish the procyclicality of fiscal policy, complying with the FR’s structural balance targets has become an important tool to guide fiscal matters—as is argued by Escobar (2019)—, and has facilitated the dialogue between finance ministers and different stakeholders on issues such as tax reforms and budget approvals, somehow constraining higher expenditure aspirations. Therefore, it can be hypothesized that, in the absence of the FR, deficits and public debt would almost certainly had been even higher, a question that we address in the quantitative analysis below.

2.3.2 Budget inflexibility & weak tax collection: Structural fiscal constraints

The discussions regarding the adoption of a fiscal rule stressed the need for it to be accompanied by institutional reforms aimed at making public current spending more flexible. Unfortunately, not only do high levels of budgetary inflexibility remain, increasing tax collections has also proven to be very difficult. Consequently, when a negative economic shock strikes, the government either uses the room under the structural target to run a larger nominal deficit or, if it does not wish to increase debt, it cuts investment spending.
Budget inflexibility

CG expenditure is highly inflexible, and that inflexibility has increased in the last decade. Namely, 96% of current expenditure (or 88% of total expenditure) is inflexible, up from 94% (or 84% of total) in 2007 (Table 1). This is explained by several factors: (i) CG transfers to territorial entities through the “Sistema General de Participaciones” (SGP) to the tune of 3.8% of GDP\(^1\); (ii) transfers to the public pension system, which hover around 3.5% of GDP; (iii) interest payments, which represent about 2.5% of GDP; (iv) personal services, which refers especially to public employees’ salaries and represent around 2.3% of GDP; and (v) other transfers, which represent 3.8% of GDP, and whose main components are transfers to special funds (about 1.4) and, since 2013, payments by the CG to fund programs previously financed with parafiscal contributions (1.1), namely the “Instituto de Bienestar Familiar” (ICBF) and the “Servicio Nacional de Aprendizaje” (SENA).

Table 1. Central government expenditure inflexibility
\(^{\% \text{ of GDP}}\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total expenditure</td>
<td>17.8</td>
<td>18.1</td>
<td>18.8</td>
</tr>
<tr>
<td>Current expenditure</td>
<td>16.0</td>
<td>15.4</td>
<td>16.6</td>
</tr>
<tr>
<td>Inflexible current expenditure</td>
<td>15.2</td>
<td>14.6</td>
<td>15.9</td>
</tr>
<tr>
<td>SGP</td>
<td>4.1</td>
<td>4.0</td>
<td>3.8</td>
</tr>
<tr>
<td>Pensions</td>
<td>3.5</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>Other transfers</td>
<td>2.4</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Debt service</td>
<td>3.1</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>Personal services</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on MHCP.

Public investment performance

Historically, on account of the lack of flexibility regarding current expenditure, public investment has been highly procyclical to revenue (Zapata & Vallejo, 2019). Following the collapse of oil prices, which reduced CG revenue by around 2 percentage points of GDP between 2013 and 2016,

\(^1\) A percentage -established in the Constitution— of average current income of the last 4 years. It is worth noting that the way the SGP is designed provides few incentives for subnational governments to generate their own revenues (fiscal laziness).
investment declined from 3% of GDP in 2015 to 1.5% in 2018, while current expenditure actually increased. The implementation of the fiscal rule in itself does not seem to have affected public investment. In fact, investment increased during the first years of the rule (from 2.4% in 2011 to 3.2% in 2013), and its contraction in 2015 coincides with the decline in CG revenue after the oil shock. Moreover, it can be hypothesized that in the absence of a fiscal rule, public investment would have inevitably contracted. In the next section we provide some evidence in favor of this hypothesis (Table 2).

Table 2. CG revenues and expenditure (% GDP)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Current expenditure</td>
<td>15.3</td>
<td>16.7</td>
<td>15.1</td>
<td>14.8</td>
<td>15.1</td>
<td>15.9</td>
<td>16.2</td>
<td>16.1</td>
<td>16.4</td>
<td>16.8</td>
<td>16.9</td>
<td>16.5</td>
</tr>
<tr>
<td>Investment expenditure</td>
<td>2.2</td>
<td>2.2</td>
<td>2.1</td>
<td>2.4</td>
<td>2.8</td>
<td>3.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.3</td>
<td>2.1</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>Fiscal revenues</td>
<td>15.6</td>
<td>15.3</td>
<td>13.8</td>
<td>15.2</td>
<td>16.1</td>
<td>16.9</td>
<td>16.7</td>
<td>16.1</td>
<td>14.9</td>
<td>15.6</td>
<td>15.3</td>
<td>16.2</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on MHCP data.

It is important to note, however, that several institutional developments have been introduced in order to protect, as far as possible, public investment and the provision of public goods in the context of the abovementioned constrains on CG investment. In Box 1 we briefly illustrate four relevant cases.

Box 1. Some institutional measures to protect public investment

Privatization of Ecopetrol (2007)

In 1999 Colombia entered a program with the IMF, one of whose pillars was to reduce the fiscal deficit. In the absence of current expenditure flexibility, the program could jeopardize Ecopetrol’s investment prospects, it being 100% state-owned and an integral part of the non-financial public sector. Having agreed that restricting Ecopetrol's investment capacity would be a mistake, several alternatives were considered and the government's request to exclude Ecopetrol from the fiscal accounts had a constructive reply from the IMF. Namely, this would be possible if two conditions were met: (i) Ecopetrol should cease being the sector’s regulator; (ii) a stake in the company should be sold to the private sector. In 2003, the “Agencia Nacional de Hidrocarburos” was created as a regulatory entity, and in 2007 around 8.5% of the company...
For several decades, various technical missions –i.e. the “Bases para una reforma tributaria estructural” (2006), the “Comisión de Expertos Para la Equidad y la Competitividad Tributaria” in 2015 and the “Comisión del Gasto y la Inversión Pública” in 2017— have highlighted the need to increase tax collections. Unfortunately, and despite 11 tax reforms carried out in the last 20
years, tax revenues (excluding those from oil) are today similar to those in 2006 and well below the average for Latin America (Figure 11a). This has mainly been driven by the stagnation of VAT and personal income tax collections (Figure 11b).

Figure 11. Tax revenues
(% of GDP)

a) CG total Revenue

b) Tax revenue by components

Whenever attempts have been made to increase VAT collection, reduce exemptions, or expand the personal income tax base, governments have encountered major obstacles in Congress. The
persistent inability to increase tax collections is mainly due to political economy issues, in particular (i) the influence that powerful economic interests exert in Congress in order to obtain exemptions or lower levels of taxation;12 and (ii) a low willingness of parties and political movements—regardless of their ideology—to increase the tax burden of the middle class, a development better understood in the context of the median voter theorem (see Box 2).

Box 2. Political economy of taxation: The medium voter approach

The median voter theorem predicts that political parties will adopt the political programs located closest to the preferences of the median vote. By doing so, they minimize the distance to the preferences of the population and, therefore, maximize the support received. It is possible to state that nowadays the median voter in Colombia is the middle class. According to Latinobarómetro, in 2018 some 39% of the Colombian population considered themselves as belonging to the middle-income class, and 76% to the expanded middle-income class (lower-middle, middle, and upper-middle). By contrast, 23% of the population considered themselves as belonging to the “low-income class” and 2% to the “upper-income class”. Such a situation is similar throughout Latin America.

Whenever tax reforms are discussed—and to a lesser extent when there are elections—politicians adapt their messages and public appearances present themselves as the true defenders of the middle class. Figure 12a shows that the number of tweets by the main political leaders mentioning the term “middle class” increases substantially in the quarters when tax reforms are under consideration. Interestingly, Figure 12b shows that this occurs regardless of political orientation.

12 This problem is documented in Salazar (2013) and Oliviera, et al. (2009)
What has been discussed up to now allows us to draw several conclusions regarding the performance of the FR and CG fiscal sustainability. Despite initial projections, the debt-to-GDP ratio has doubled in the last decade. This has been due to the collapse of oil prices in 2014 and to the wide cyclical fiscal space that resulted from considering such shock as mostly temporary, while to a large extent having considered as permanent the boom that preceded the downturn. The central issues to consider regarding the FR´s performance can be summarized as follows:

Regarding 2016 and 2018 tax reforms, a large part of the messages were aimed at criticizing (i) the reduction of the income level required to pay personal income taxes; (ii) the increase in the VAT rate from 16% to 19% (in 2016); and (iii) the proposal to extend the VAT to the basic consumption basket (in 2018), arguing that this measures affected the middle class. This occurred despite the fact that the proportion of people who pay income tax is extremely low – around 4% of the labor force in 2018, compared to 10% on average in Latin America (CEPAL, 2019)—. Also, while it certainly makes sense for the poor not to pay VAT on their basic consumption basket, the proposal that this benefit should not be extended to the rest of society was challenged on the grounds that removing the exemption would hurt the middle class.

What has been discussed up to now allows us to draw several conclusions regarding the performance of the FR and CG fiscal sustainability. Despite initial projections, the debt-to-GDP ratio has doubled in the last decade. This has been due to the collapse of oil prices in 2014 and to the wide cyclical fiscal space that resulted from considering such shock as mostly temporary, while to a large extent having considered as permanent the boom that preceded the downturn. The central issues to consider regarding the FR´s performance can be summarized as follows:

Figure 12. Politician’s tweets related to the middle class (2012-2020)

- **a) All politicians**
- **b) By ideological orientation**

Note: Politicians scrutinized: Álvaro Uribe, Gustavo Petro, Jorge Robledo, Iván Duque, Claudia López, Oscar Iván Zuluaga, Juan Manuel Santos, Maria Fernanda Cabal, Humberto de la Calle, German Vargas, Roy Barreras, David Barguil and Ernesto Macías.
(i) Key inputs to the FR, namely the long-run price of oil and the long-run rate of growth, have proven to be consistently over-optimistic and this feature might have been facilitated by the CCRF not having its own technical staff.

(ii) The rule has not had clear and well-defined escape clauses, leading to discretionary decisions, conceivably undermining its credibility.

(iii) Public investment has declined since the 2014 oil shock, although several measures have been taken to somewhat safeguard investment, including the provision of infrastructure investment by the private sector.

(iv) The challenging fiscal situation highlights the need for reforms making public expenditure more flexible and increasing tax revenue, thereby protecting public investment.

(v) Since targets on the structural balance have not been sufficient to guarantee debt sustainability, improvements in the design of the rule should be considered in such a way that it incorporates some type of anchor in the level of indebtedness.

Notwithstanding the above considerations, it can well have been the case that matters would have evolved in a more negative manner had the FR not been in place. This is a matter that we seek to address below, undertaking a synthetic control exercise. Also, we will discuss alternative designs and possible modifications for the FR, consistent with both achieving fiscal sustainability in the medium term and safeguarding public investment.

3 Quantitative analysis

Several quantitative exercises are presented in the next two sections. The first section provides a retrospective evaluation of the FR seeking to assess its effect on public debt and public investment using the Synthetic Control Method. In the second section we identify the tolerable debt limit in Colombia and subsequently calibrate a debt anchor consistent with stabilizing debt in the medium term. In addition, we simulate deficit, expenditure and revenue trajectories required for accomplishing the medium-term debt target.

3.1 Fiscal Rule evaluation: the synthetic control approach

In this section, we use the synthetic control method to approximate the effect that the FR could have had on debt and on public investment. To do this, we build a counterfactual (synthetic
Colombia) that will allow us to reproduce the trajectories that debt and investment would have had if in an economy as similar as possible to Colombia if the fiscal rule had not been implemented.

Following Abadie, et al. (2019), we suppose that there are \(J + 1 \) countries, and that Colombia implemented a FR in year \(T' \). Let \(Y_{it} \) be the dependent variable (for example, the debt-to-GDP ratio or public investment) for countries \(i = 1, \ldots, J + 1 \) and years \(t = 1, \ldots, T \).

Then, we can define

\[
Y_{it} = Y_{it}^N + \alpha_{it} D_{it}
\]

(4)

Where: \(Y_{it}^N \) is the debt-to-GDP ratio for country \(i \) in \(t \), in absence of a FR; \(\alpha_{it} \) is the FR effect for \(i \) in \(t \) and \(D_{it} \) is a dummy variable that equals 1 if country \(i \) has a FR in the year \(t \) and 0 otherwise.

It can be observed that \(Y_{it} = Y_{it}^N \) for \(i = 2, \ldots, J + 1 \) for all \(t \), and for \(i = 1 \) in \(t \in \{1, \ldots, T'\} \). On the other hand, \(Y_{1t}^N \) is an unobservable variable for \(t \in \{T' + 1, \ldots, T\} \) (when the FR is in place).

Therefore, in order to estimate the trajectory of Colombia in the absence of a fiscal rule, it is necessary to approximate \(Y_{1t}^N \) to a synthetic unit named “synthetic Colombia” that we define as the weighted average of the countries in the donor pool (\(i = 2, \ldots, J + 1 \))

\[
\hat{Y}_{1t}^N = \sum_{i=2}^{J+1} W_i Y_{it}
\]

(5)

Where \(W_i \) is the vector that minimizes the distance between the treated unit (Colombia) and the linear combination of countries in the donor pool, in terms of a set of predictor variables that are correlated with public debt and are averaged over a for several years before the implementation of the FR. In this way, if \(W \) is maximized, \(Y_{1t}^N \) approaches \(Y_{1t} \) during the pre-treatment period and therefore, reproduces the behavior of the debt in the absence of FR in the post-treatment period.

3.1.1 Synthetic control for the debt-to-GDP ratio

To undertake the synthetic control model to estimate FR’s impact on CG indebtedness, we considered the 174 countries included in the IMF’s Public Debt Database, among which we identified 59 that as of 2017 had not implemented any fiscal rule on their CG finances. We
constrained the comparison group to countries with certain similarity to Colombia in terms of income and export orientation13.

Figure 13 shows the estimated effect of the FR on the debt-to-GDP ratio. It follows that in absence of a FR, Colombian indebtedness would have been 12 pps. higher than the level observed in 2017.14 This result is consistent with Escobar (2019), according to whom the FR has been a useful tool for the Minister of Finance to guide public finances and constrain larger public spending aspirations by government agencies and Ministries and has facilitated the approval of tax reforms in Congress.15

\textbf{Figure 13 Plausible debt-to-GDP trajectory in the absence of a FR}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure13}
\caption{Plausible debt-to-GDP trajectory in the absence of a FR}
\end{figure}

\begin{flushright}
Source: Authors’ calculations based on IMF data
\end{flushright}

13 The procedure carried out to select countries, variables and weights is described in Appendix A.
14 Debt-to-GDP ratio values in the figure are lower than the official ones published by the Ministry of Finance. This occurs because the IMF debt series measures only the Budgetary CG debt, thus excluding extra-budgetary entities.
15 Following Abadie, et al. (2010), we conducted placebo tests as a robustness check for our results, and we present them in Appendix B.
3.1.2 Synthetic control for public investment (% of GDP)

Public investment data used to carry out this exercise corresponds to General Government (GG) investment, since it has not been possible to obtain investment data from the CG for a sufficiently large number of countries16.

Results of the estimation are shown in Figure 14, suggesting that in the absence of the FR, public investment in 2017 would have reached 4.9% of GDP, very similar to the levels actually observed (5.1%).17 In that sense, there would be no evidence to support the claim that implementation of the FR constrained public investment. Rather, its contraction after 2014 seems to have been related with the end of the commodity prices boom and the persistence of a procyclical behavior of public investment.

\textbf{Figure 14. Plausible public investment trajectory in the absence of FR (% of GDP)}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure14.png}
\caption{Plausible public investment trajectory in the absence of FR (% of GDP)}
\end{figure}

Source: Authors’ calculations based on IMF data

16 The results of this exercise should be taken with caution insofar as the fiscal rule examined applies to the CG while investment corresponds to the GG. In fact, investment of sub-national entities has increased since the royalty reform in 2012 and compensated the contraction of CG investment after the oil price shock in 2015.

17 The procedure carried out to select countries, variables and weights used to build the synthetic unit are found in Appendix C.
3.2 Calibration exercise of the fiscal rule for the structural balance with a gross public debt anchor

Expenditure inflexibility and low level of revenues began to take their toll on the CG when oil prices plummeted in 2014, taking debt from 37% of GDP in 2014 to 50% in 2018. These constraints become even more critical in the context of the COVID-19 crisis, with gross debt projected to exceed 60% of GDP in 2020 as a result of (i) the large exchange rate depreciation; (ii) the sharp decline in growth, which reduces tax revenues and increase the debt-to-GDP; and (iii) the additional expenditure associated with health & social assistance.

Correctly so in our opinion, on June 13 of 2020 the CCRF unanimously agreed to suspend the fiscal rule for 2020 and 2021. Although this is a sensible option in the short term, it does not prevent debt from increasing and it is therefore essential to carry out institutional reforms that guarantee medium term fiscal sustainability.

A priority within those institutional changes is to anchor the fiscal rule to a debt target. Recent literature recommends this type of alternative as it facilitates the recovery of the link between fiscal flows and changes in stocks (IMF, 2018b). This is the purpose of the following quantitative exercises, where we anchor the current fiscal rule to a prudent level of debt and present simulations of the main fiscal variables in the medium term, so to achieve the debt target.

To do this, we follow the following steps: (i) we estimate a prudent level of debt in the medium term using two methodologies: (a) based on a regime-change approach, we analyze debt’s past behavior in order to detect periods in which debt dynamics became unstable; (b) based on a neoclassical production function that incorporates complementarity between public and private investment (IMF’s buffer-risk methodology), we calculate the debt level that maximizes economic growth and estimate a prudent level that ensures that under different shocks debt will likely not exceed the resulting debt ceiling, and (ii) we use a Neo-Keynesian general equilibrium model in which we anchor the fiscal rule on the structural balance to reach the estimated prudent level of debt in the medium term. We simulate for the medium term the main fiscal variables consistent with meeting the estimated prudent debt target and conditioned to different scenarios of economic growth and public expenditure associated with the COVID-19 emergency.
3.2.1 Debt anchor estimation

Prudent level of debt: Regime-change approach

Debt dynamics have a non-linear behavior; there are periods and critical levels in which debt can follow an explosive and unstable trend. Hence, detecting debt levels where debt dynamics change their regime -i.e. becomes unstable — allows us to detect the prudent level around which debt should be maintained. For the case of Colombia, we use the smooth transition regime change model presented by Granger and Teräsvirta (1993), whose fundamental assumption is that regime changes are mainly generated by a transition variable (z_t), which passes through the critical value or threshold (th) and whose occurrence depends on the weights assigned to the regimes. We will refer to this critical value as the prudent debt level.

For this particular study, regimes are defined by two possible states (S^j_t) –where j could be L (stable) or H (unstable) — defined by the level of the endogenous variable debt-to-GDP ratio (d_t). The probability of occurrence of the unstable (H) state is defined by:

$$Pr(S^H_t) = G(z_t; \gamma, th)$$ \hspace{1cm} (6)

Where γ represents the speed or smoothness parameter of adjustment, and $G(\cdot)$ represents the transition function between both states –bounded between 0 and 1— and which changes smoothly as z_t grows. This transition function takes the form of a first order logistic function or LSTAR:

$$G^{LSTAR}(z_t; \gamma, th) = \left(1 + \exp(-\gamma(z_t - th))\right)^{-1}, \gamma > 0$$ \hspace{1cm} (7)

Therefore, the LSTAR model can be represented in the following way as an extension of an Auto-Regressive (AR) model of order p that allows changes in the parameters of the model depending on the value of the exogenous transition variable (z_t):

$$d_t = X_t + G^{LSTAR}(z_t; \gamma, th)X_t + \epsilon_t$$ \hspace{1cm} (8)

where $X_t = (\phi_0, \phi_1d_{t-1}, \phi_2d_{t-2}, ..., \phi_p d_{t-p})$ is a vector of lagged debt values d_t with their respective coefficients (ϕ) and ϵ_t represents the error term, which must be white noise with constant variance and asymptotically normal distribution.
The results show that there is a statistically significant threshold of around 46% of GDP (Table 3), which was reached during the 1999 crisis and surpassed in 2017, after the collapse of the oil price in 2014 (Figure 15). We will define this value \((th)\) as prudent debt level # 1.

Table 3. LSTAR estimation for prudent debt-to-GDP ratio

| | Coeficiente | Error Est. | t-valor | Pr(>|z|) |
|----------------|-------------|------------|---------|----------|
| Const. \(\phi_0^L\) | 2.268 | 1.052 | 2.156 | 0.031 |
| \(\phi_1^L\) | 1.683 | 0.128 | 13.104 | 0.000*** |
| \(\phi_2^L\) | -0.737 | 0.125 | -5.897 | 0.000*** |
| Const. \(\phi_0^H\) | -80.109 | 32.325 | -2.478 | 0.013 |
| \(\phi_1^H\) | -2.321 | 1.071 | -2.167 | 0.030 |
| \(\phi_2^H\) | 4.176 | 1.067 | 3.914 | 0.000*** |
| \(\gamma\) | 33.534 | 15.38 | -2.180 | 0.030 |
| Threshold \((th)\) | 46.038 | 0.061 | 751.509 | 0.000*** |

Signif: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

L: Regime 1 – Stable debt

H: Regime 2 – Unstable debt

Source: Author’s calculations

Figure 15. Prudent debt-to-GDP ratio

Source: Authors’ calculations.
Prudent level of debt: Buffer against future risk (IMF approach)

This approach seeks to estimate the debt level that allows to hedge against risks that may arise from the volatility of key variables such as the interest rate (domestic and foreign), exchange rate, oil price and economic growth. This methodology has two stages: first, following Checherita, et al. (2012), we estimate a maximum debt ceiling, consistent with Colombia’s growth conditions and second, a prudent level of debt (debt’s prudent level # 2) consistent with not exceeding the maximum debt ceiling, under conditions of stress of key variables.

Maximum debt ceiling

Assuming that public investment is financed through indebtedness, the idea is to gauge the level of debt that maximizes the public capital stock and, therefore, economic growth. We start from a production function denoted by:

\[Y_t = \left(L_t^{\beta} K_t^{1-\beta} \right)^{1-\alpha} K_{gt}^\alpha \]

(9)

Where \(Y_t \) represents output, \(L_t \) labor, \(K_t \), the private capital stock, and \(K_{gt} \) the public capital stock.

After reorganizing, we obtain

\[Y_t = (L_t^\epsilon K_t^{1-\alpha})^{1-\alpha} \left(\frac{K_g}{L_t} \right)^\alpha \]

(10)

where

\[\epsilon = \beta (1 - \alpha) \]

(11)

In the steady-state, public capital grows at a constant rate denoted by \(\Delta K_g = x K_g \), where \(x \) is also the growth rate of output, consumption, and private capital.

After maximizing \(x \), we obtain \(d^* \), the value of the debt-to-GDP ratio that maximizes growth – i.e. the maximum debt ceiling—.

\[d^* = \left(\frac{\alpha}{(1-\alpha)^2} \right)^{1-\alpha} \]

(12)
We estimate (9) using data from the IMF’s Investment and Capital Stock Database for the period 1990-2017. We present 3 OLS and DOLS estimation models (Table 4) and we recover the values for α and d^*. Using the average of the three results, we found that the value of debt that maximizes public investment and growth—*the maximum debt ceiling*—is, on average, 63.5% of GDP.

Table 4. Maximum debt limit estimation

<table>
<thead>
<tr>
<th>Variables</th>
<th>OLS (Ln (Y/K))</th>
<th>OLS (Ln (Y/K))</th>
<th>DOLS (Ln (Y/K))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(Kg/K)</td>
<td>0.301***</td>
<td>0.272***</td>
<td>0.260***</td>
</tr>
<tr>
<td></td>
<td>(0.0353)</td>
<td>(0.0949)</td>
<td>(0.0320)</td>
</tr>
<tr>
<td>Ln(L/K)</td>
<td>0.372***</td>
<td>-0.215***</td>
<td>0.331***</td>
</tr>
<tr>
<td></td>
<td>(0.0476)</td>
<td>(0.0232)</td>
<td>(0.0347)</td>
</tr>
<tr>
<td>Trade/GDP</td>
<td>0.00294</td>
<td>-0.00142</td>
<td>0.00629***</td>
</tr>
<tr>
<td></td>
<td>(0.00269)</td>
<td>(0.00459)</td>
<td>(0.00221)</td>
</tr>
<tr>
<td>Δ Ln(Kg/K)</td>
<td>-0.663***</td>
<td>0.863***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.122)</td>
<td>(0.155)</td>
<td></td>
</tr>
<tr>
<td>Δ Ln(L/K)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>4.747***</td>
<td>4.296***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.330)</td>
<td>(0.254)</td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.761</td>
<td>0.991</td>
<td>0.853</td>
</tr>
<tr>
<td>Maximum debt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha</td>
<td>0.301</td>
<td>0.272</td>
<td>0.26</td>
</tr>
<tr>
<td>D*</td>
<td>71.3%</td>
<td>61.5%</td>
<td>57.6%</td>
</tr>
<tr>
<td>D average*</td>
<td>63.5%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Source: Authors’ calculations based on IMF and MHCP data.

18 Based on Frankel and Romer (1999) and Dollar and Kraay (2004), we include the trade-to-GDP ratio as a control on account of it being an important driver of growth.
From these results and following IMF (2018b), we proceed to estimate prudent debt level #2, one that ensures that under different shocks19 CG debt will likely not exceed the maximum debt ceiling at a 10% tolerance criterion. As is shown in Figure 16, prudent debt level #2 should not exceed 50% of GDP.

![Figure 16. Prudent level of debt](image)

Source: Authors’ estimations based on WEO-FMI data

As can be seen, *estimated prudent debt level’s # 1 and #2 are similar (50% and 46%).* We take their average as a point of reference for establishing a debt anchor (\tilde{d}) of 48% of GDP in the medium term. This finding is consistent with the average debt-to-GDP ratio observed between 2017-2018 in countries with the same credit rating as Colombia (54% in Fitch and S&P and 45% in Moody’s)20, and is slightly lower than other debt threshold estimations. For instance, Marney & Ramsey (2020) estimated a prudent level around 60%; Lozano and Julio (2019)—under a fiscal fatigue approach—estimated a maximum tolerable CG debt for Colombia in 52.4%, and Mendoza Oviedo (2009) found a debt ceiling of around 55%, under a fiscal solvency approach.

19 Forecasts and shocks were estimated from a VAR model and the respective matrix of variances and covariances of the errors. By definition, shocks that have not occurred in the past are not considered, the pandemic being one of them. Variables in the VAR estimation are foreign and domestic interest rate, growth rate, inflation, primary balance, and spot oil prices.

20 Authors’ calculations based on IMF data.
3.2.2 Calibration of a debt-anchor

Given the previous results and using a Neo-Keynesian general equilibrium model built by Valencia and Angarita (2020), we proceed to simulate the total and structural deficit trajectories required to achieve a debt anchor of 48% of GDP in the medium term, taking into account the COVID-19 shock and conditioning the simulation on different growth scenarios.

Figure 17 summarizes the main components of the model for a small open economy with a domestic and a foreign market. The model includes a fiscal module that incorporates a structural balance rule and a debt anchor. Both the domestic market and the fiscal balance are oil dependent.

Since the fiscal rule is defined in terms of output gaps and fiscal variables, it is convenient to represent the model in gaps (denoted by \(\hat{\cdot} \)). The micro-foundation of the model makes it possible to represent the demand for goods and services through a forward looking IS curve as follows:

\[
\hat{y}_t = E_t[\hat{y}_{t+1}] - \gamma_1(E_t[\hat{g}_{t+1}] - \hat{g}_t) - \gamma_2(\hat{i}_t - E_t[\hat{\pi}_{t+1}] - \rho) + \gamma_3(E_t[\hat{\delta}_{t+1}] - \hat{\delta}_t) + \varepsilon_t \hat{y} (13)
\]

Where \(E_t[\cdot] \) denotes expectations, \(g_t \) government expenditure, \(i_t \) the nominal interest rate, \(\pi_t \) the rate of inflation, \(\rho \) a time preference parameter, \(\delta_t \) the exchange rate and \(\varepsilon_t \) demand shocks. Importantly, Equation 13 captures the contemporary impact of fiscal impulses, although it includes
a medium-term countercyclical adjustment \((E_t[\hat{g}_{t+1}] - \hat{g}_t)^{21} \). The other components are standard:

- expectations of the output gap \(E_t[\hat{y}_{t+1}] \), a negative relationship between the output gap and the expected real interest rate \((\hat{i}_t - E_t[\pi_{t+1}] - \rho) \) and a positive relationship with expected currency depreciation \(E_t[\delta_{t+1}] - \delta_t \).

On the supply side, firms act in monopolistic competition, use only labor for simplicity, and have sticky prices. In terms of gaps, the behavior of prices implies the resulting Neo Keynesian Philips curve:

\[
\pi_t = \beta E_t[\pi_{t+1}] + \kappa \left[\phi_1 \hat{y}_t + \phi_2 \hat{\gamma}_t + \phi_3 \hat{\delta}_t + \frac{\tau_{ss}}{1-\tau_{ss}} \hat{\tau}_t - (1 + \phi_4) \varepsilon_t \right]
\]

(14)

Where \(E_t[\pi_{t+1}] \) are inflation’s expectations with \(\beta < 1 \), \(\hat{y}_t \) is the foreign output gap, \(\hat{\tau}_t \) the tax gap, \(\frac{\tau_{ss}}{1-\tau_{ss}} \) a tax distortion and \((1 + \phi_4) \varepsilon_t \) a supply shock. Importantly, in equilibrium, direct taxes affect price formation through the labor cost channel. Additionally, note that the response of prices to changes in the tax gap \((\hat{\tau}_t) \) depends on the degree of tax distortion \((\frac{\tau_{ss}}{1-\tau_{ss}}) \).

The fiscal module considers a fiscal rule that establishes yearly targets on the structural balance. The structural balance is calculated according to the IMF’s methodology. Structural revenues and expenses (denoted by \(\tau_t^s \) and \(g_t^s \)) can be expressed as:

\[
\frac{\tau_t^s}{\tau_t} = \left(\frac{y_t^P}{y_t} \right)^\eta \quad \text{and} \quad \frac{g_t^s}{g_t} = \left(\frac{y_t^P}{y_t} \right)^\varphi
\]

(15)

Where \(y_t^P \) is potential output, and \(\eta \) and \(\varphi \) are the structural expenditure and revenue elasticities\(^{22} \) to the ratio \(\frac{y_t^P}{y_t} \). We can define the structural balance as follows:

\[
sb_t = \frac{SB_t}{y_t} = \frac{\tau_t^s}{y_t} - \frac{g_t^s}{y_t^P} = \left[\frac{\tau_t}{y_t} \left(\frac{y_t^P}{y_t} \right)^\eta \right] - \left[\frac{g_t}{y_t} \left(\frac{y_t^P}{y_t} \right)^\varphi \right]
\]

(16)

Which, in terms of the output gap would be

\(^{21}\) This means that any fiscal impulse made in \(t \) must be compensated with an adjustment in the future.

\(^{22}\) \(\tau \) includes total tax revenues (oil and non-oil). It is very difficult to measure oil’s structural component due to the non-linear nature of oil prices. Best practices recommend excluding the oil component from the structural balance to avoid transferring its price volatility to the fiscal accounts (Lopez and Villafuerte, 2010).
\[sb_t = \frac{\tau_t y_t}{y_t} (1 + \gamma_t) \left(1 - \frac{g_t}{y_t} \right) (1 + \gamma_t)^{1 - \varphi} \]

(17)

The structural balance is calculated with information on the output gap, elasticities and revenue and expenditure for each year as a percentage of GDP.

Fiscal balances anchored to the prudent level of debt

Debt convergence towards the debt anchor \(\bar{d} \) is achieved through short-term debt targets \(d_t \) determined by the following autoregressive process:

\[\bar{d}_t = c_1 \bar{d} + (1 - c_1) d_{t-1} + \epsilon_t \]

(18)

Where \(c_1 \) measures the speed of adjustment of debt towards the debt anchor. The advantage of this expression is that it is always easily estimated and provides a guide on how to reach the debt anchor.

The determination of the fiscal balance consistent with a debt anchor is a problem the policymaker solves by minimizing (i) the difference between the total balance \(b_t \) and the structural balance \(sb_t \) and (ii) between observed debt \(d_t \) and the short-term debt target \(d_t \). In this sense, the policymaker chooses the fiscal balance and debt paths in such a way that they close the structural balance and debt gaps, subject to its budget constraint (Equation 20)\(^\text{23}\):

\[
\begin{align*}
\min_{b_t, d_t} & \quad E_t \left[\sum_{t=0}^{T} \beta_{gov} \left(\frac{f}{2} (b_t - sb_t)^2 + \frac{f}{2} (d_t - d_{t-1})^2 \right) \right] \\
\text{subject to} & \quad (1 + \theta_t) d_t = d_{t-1} - b_t \quad (20) \\
\text{given} & \quad d_0 \geq 0 \\
\text{subject to} & \quad \lim_{t \to T} b_t = \bar{sb} \quad (21)
\end{align*}
\]

\(^{23}\) The Government’s restriction is expressed in terms of the total balance and debt, as follows: \(d_t = \left[a^d \frac{1 + r_t}{1 + \theta_t} + (1 - a^d) \frac{1 + r^*}{1 + \theta_t} \right] d_{t-1} - (\tau_t - g_t) \), where \(r_t \) is the domestic real interest rate, \(r^* \) is the foreign real interest rate, \(\tau_t \) is tax revenue, \(g_t \) is government expenditure, \(a^d \) the share of domestic currency debt and \(\theta_t \) the economic growth rate. Now define \(\tilde{r}_t = a^d (1 + r_t) + (1 - a^d) (1 + r^*) \); the budget constraint is collapsed to \(d_t = \left[\frac{1 + \tilde{r}_t}{1 + \theta_t} \right] d_{t-1} - (\tau_t - g_t) \). The balance is defined as \(b_t = (\tau_t - g_t - \tilde{r}_t d_{t-1}) \). Therefore, the budget constraint can be expressed as equation 20.
\[
\lim_{t \to T} d_t = \bar{d} \quad (22)
\]

Where \(f_1 \) & \(f_2 \) are the weights given by the policymaker to each gap, \(\beta_{gov} < 1 \) is the government's discount factor and \(\bar{sb} \) is the medium-term structural balance consistent with the debt anchor. The Euler condition of the optimization problem is:

\[
(s_b - b_t) = \frac{1}{1+\theta_t} \left[\beta_{gov} E_t (s_{b+1} - b_{t+1}) + \frac{f_2}{f_1} (\bar{d}_t - d_t) \right] \quad (23)
\]

Equation (23) shows that, in equilibrium, the gap between the total and the structural balance should be equal to the expected value of the same gap in the future plus the difference between current debt and the debt anchor. The fiscal adjustment consistent with debt deleveraging is consistent with a path that gradually generates countercyclical adjustments in fiscal balances. For example, if the fiscal balance gap is positive in \(t \), it must be compensated with a reduction in future fiscal balance gaps in order to reduce the debt gap. If at the same time the debt gap is very large, the government must generate intertemporal cyclical savings to achieve the adjustment towards the debt anchor. This means that keeping the balance gap positive today implies a future fiscal adjustment. In equilibrium, equations 18-23 determine the path for debt and the fiscal and structural balances.

This model was calibrated for Colombia24 using Bayesian techniques25. Given the uncertainty regarding the future path of key economic variables due to the pandemic, conditional simulations are made for different growth scenarios in order to analyze medium term dynamics of fiscal variables. In particular, two growth scenarios were considered for the following years (Figure 18). The first comes from Fedesarrollo in which output is expected to contract by 7.9% in 2020 followed by a 3.5% rebound in 2021. The second scenario, envisioned by the government in the MFMP 2020, expects a contraction of 5.5% in 2020 and a 6.6% rebound in 2021.

24 Data for 2000-2019 was obtained from MHCP, DANE, WB, and Banco de la República.

25 The estimated parameters are summarized in Appendix D.
Our model differs from the traditional Colombian FR rule in two respects. The first is that the structural balance is endogenously determined by economic variables and should not necessarily be decreasing. This is justified by the fact that different shocks have persistently affected the potential level of output and therefore the structural balance. The recent episode of the pandemic is an obvious case in point. There is a growing literature on how COVID-19 can have implications on productivity, value chains and rates of return on capital, thus having long-term consequences on economic activity (see Dieppe, 2020; Guerrieri, et al., 2020; Jorda, et al., 2020 and Bodenstein, et al., 2020).

In fact, Fedesarrollo´s growth assumption envisions a decline in potential growth, from 3.4% to 3% due to the COVID-19. The endogenous specification of the structural deficit allows us to capture the implications that the decline in potential growth would have on the structural balance. In this case, the contraction in potential output translates into a substantial drop in structural revenues.

The second aspect is the rule that we simulate is anchored to converge to a long-term prudent debt level of 48% consistent with a long-term structural deficit of 1% of GDP. This allows us a similar response scenario for the fiscal paths to achieve this objective.
Below we present the simulations of the main fiscal variables in the medium term, anchoring the fiscal rule to a medium-term debt target of 48% of GDP. We analyze two scenarios with different assumptions regarding economic growth (moderate and pessimist). Figure 19 shows the debt-to-GDP ratio forecasts consistent with a medium-term debt target of 48% of GDP. As can be seen, our model manages to replicate the debt increase forecasted for 2020 under all specifications of the FR. However, we forecast higher debt levels in the following years, in contrast to MHCP projections. In the short term, gross debt levels could reach 69% of GDP and would converge towards a level of 48% of GDP in 2035. Of course, this is conditional on growth dynamics.

![Figure 19. Debt simulations (2020-2035) (% of GDP)](image)

Source: Authors’ calculations.

Figure 20 shows the evolution of the structural and total deficit. Under both growth scenarios, the model predicts a deficit between 8.8-9% of GDP for 2020. It can also be seen that the structural deficit would increase to 6 and 7% of GDP in 2020 and should be gradually adjusted, in order to converge to 1%, consistent with the medium-term debt anchor.

26 It is important to bear in mind that these discrepancies are in part due to the fact that MFMP20’s scenario envisions the privatization of several public assets in 2021 for 1.1% of GDP.
Figure 20. Deficit forecasts

(\% of GDP)

a) Moderate growth scenario

b) Pessimist growth scenario

Source: Authors’ calculations.

Importantly, the simulations suggest that the primary balance should be positive since 2022, generating fiscal savings that in 2024 will reach 2,4\% of GDP and would be on average 0,7\% of
GDP between 2022 and 2035. In the medium term, the primary balance should be stabilized around 0.3%, consistent with the debt target. (Figure 21)

Figure 21. Primary balance forecasts

![Primary balance forecasts](image)

Source: Authors’ calculations.

Figure 22 shows the CG’s expenditure and revenue trajectories for the next decade that are required to achieve the debt target of 48% of GDP. Tax revenues are expected to fall to 14% of GDP in 2020-2021 due to the crisis. In the medium term a significant increase is required, leading to a tax collection level of 17.8% of GDP, which is consistent with MFMP projections. However, this is not enough; primary expenditure will reach around 20% of GDP in 2020 and must be reduced to 15% of GDP in the medium term in order to achieve the debt target. In this sense, it is of utmost importance that the increases in emergency expenditure does not become permanent and, above all, that there be an improvement in the quality of spending, delivering a multiplier effect that accelerates the growth path.\(^{27}\)

\(^{27}\) It is worth remembering that these projections do not consider the possibility of privatizing state assets, which, although do not reduce deficit, reduce the need to finance it through debt only.
Figure 22. Revenues and primary expenditure forecasts (2020-2035)

(% of GDP)

a) Revenues

b) Primary expenditure

Source: Authors’ calculations.
4. Conclusions and policy recommendations

Our main findings can be summarized as follows:

Despite complying with the structural balance targets established in the FR law, public debt has increased significantly since the rule was established, in sharp contrast to what was envisioned in 2011. After the oil price shock and in a context of large currency depreciation, debt increase was also explained by consistently having allowed for a fiscal cyclical adjustment that every year except one delivered a total deficit that was larger, and sometimes much larger, than the structural deficit. In this process, the long-run price of oil and the long-run rate of GDP growth suggested by the government and validated by the CCRF proved to have been consistently optimistic. CCRF’s lack of its own independent technical staff might have played a role in these developments.

Notwithstanding the rise in debt, the synthetic control exercise suggest that had the FR not been in place, the rise in the debt burden would probably have been even higher. In any event, a key purpose of having introduced a FR, namely reducing the procyclicality of fiscal policy, has not been achieved. Furthermore, given the inflexibility of current spending, central government investment has been highly procyclical and was sharply cut after the oil shock. Nevertheless, the synthetic control exercise suggests that regardless of the FR, investment would have declined. Also, it is important to highlight that the lack of clearly defined escape clauses has brought about discretionary measures –prominently additional fiscal space in 2019 to accommodate the costs associated with massive migration from Venezuela—that potentially undermine the credibility of the rule.

One of the main purposes of having established a FR was to recover for Colombia an investment grade rating from credit rating agencies. This objective, which was achieved early on, is now in jeopardy. The continuous rise in debt since the FR’s inception has now been coupled with a sharp increase in debt on account of the fiscal implications of the Covid-19 pandemic. Public debt is now projected to exceed 60% of GDP in 2020 and 70% in 2021. In that context, the suspension of the fiscal rule in 2020 may be the perfect opportunity to reform key issues of the FR, necessary to restore fiscal sustainability in the medium term.
Based on these findings, we offer the following policy recommendations:

It is essential to modify the FR so that it incorporates a debt anchor. Our estimations support that this level should not exceed 48% in the medium term. Debt reduction must be a priority to avoid a crowding out effect on economic growth.

In order to pursue this ambitious objective while at the same time aiming to protect public investment, essential components of the reform effort include allowing for greater flexibility in current spending and enhancing tax collections. In addition, spending related to COVID-19 need to be transitory and towards the future the policy mix should involve a reduction in spending and increases in revenues, which could be achieved, among others, through improving spending efficiency and allocation and reducing tax-related expenditure.

Ideally, the CCRF should have its own technical staff and the FR should incorporate explicit and transparent escape clauses for exceptional situations. For instance, in the escape clauses the trigger to temporarily abandon the rules must be clearly defined and should include correction mechanisms.
5. References

6. Appendices

A. Construction of "synthetic Colombia" for the debt-to-GDP ratio

From the 50 countries that did not implement any fiscal rule at the central level, 9 were excluded because of lack of data. For the remaining 50 - which became our donor pool - we collected a large number of possible predictive variables from 2004 to 2017: (i) GDP and GDP per-capita (PPP); (ii) CG fiscal deficit; (iii) population size\(^{28}\); (iv) real interest rate\(^{29}\); (v) GG public investment; (vi) Terms of trade index for commodities; and (vii) Human capital index\(^{30}\).

Using 27 countries\(^{31}\), we estimated the model and built “synthetic Colombia”. Countries and weights are listed in Table 5, excluding those whose weights are 0\(^{32}\). Following Abadie, et al. (2010), we excluded from the analysis those countries whose Mean Squared Prediction Error (MSPE)\(^{33}\) were high compared to Colombia\(^{34}\), since it is not suitable to compare effects from models poorly adjusted (high MSPE) with those best adjusted, like the one for Colombia, which MSPE is low (1.7).

\(^{28}\) Measured in millions of people.

\(^{29}\) Measured as the inflation-adjusted lending interest rate.

\(^{30}\) Terms of trade index was taken from the IMF. Data on population and real interest rate was obtained from the World Bank, the human capital index from PWT9.1. The remaining variables were taken from the World Economic Outlook (WEO). Philippine debt data was obtained from official sources.

\(^{31}\) We eliminated the 23 least similar countries compared to Colombia both in the pre-treatment period and during 2014 and 2015, bearing in mind that during this period Colombia’s terms of trade fell sharply due to the oil shock.

\(^{32}\) The countries used to build the counterfactual share certain similarities with Colombia. It is observed that the majority are exporters of primary goods (Bangladesh, Guatemala, and Zimbabwe) and some in particular, of minerals and oil (Kazakhstan, Guatemala and South Africa).

\(^{33}\) The MSPE averages the difference between the behavior of the observed debt and the synthetic debt for the pre-treatment period.

\(^{34}\) More than 3 times the MSPE of Colombia.
Table 5. Countries used to build synthetic Colombia (debt)

<table>
<thead>
<tr>
<th>Country</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>0,081</td>
</tr>
<tr>
<td>Guatemala</td>
<td>0,035</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>0,206</td>
</tr>
<tr>
<td>Mozambique</td>
<td>0,124</td>
</tr>
<tr>
<td>South Africa</td>
<td>0,515</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>0,039</td>
</tr>
</tbody>
</table>

Predictor variables that best adjusted the behavior of the synthetic unit to that of Colombia in the pre-treatment period are presented in Table 6. In the estimation, these variables were averaged for the period 2000-2011. There can be seen that the averages of the predictor variables for Colombia and the synthetic are for the most part very similar.

Table 6. Predictor balance (2007-2011)

<table>
<thead>
<tr>
<th></th>
<th>Colombia</th>
<th>Synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagged debt-to-GDP</td>
<td>30,33</td>
<td>34,66</td>
</tr>
<tr>
<td>Per-cápita GDP</td>
<td>9631</td>
<td>9629</td>
</tr>
<tr>
<td>Population</td>
<td>43,15</td>
<td>43,14</td>
</tr>
<tr>
<td>Terms of trade</td>
<td>97,48</td>
<td>97,48</td>
</tr>
<tr>
<td>Human capital index</td>
<td>2,28</td>
<td>2,28</td>
</tr>
<tr>
<td>Fiscal deficit</td>
<td>-3,24</td>
<td>-0,35</td>
</tr>
</tbody>
</table>

B. Placebo tests: Difference between the estimated and observed debt-to-GDP ratio for every country in the donor pool

As a robustness check and in order to assess the statistical significance of the results, we carried out different placebo tests, which consist of estimating the synthetic control method in each of the countries in the donor pool, as if they had adopted a fiscal rule in the same year than Colombia. Since the countries did not implement an RF, the estimated effect should be null or at least smaller than the estimated for Colombia. Otherwise, it could be suspected that the effect estimated for Colombia could be simply a result of the mathematical procedure used. The estimated effect for

35 Except fiscal deficit, averaged from 2004 to 2011.
Colombia is one of the highest, which allows us to conclude that FR effect on debt seems to be significant (Figure 23).

Figure 23. Placebo tests: Difference between the observed debt and the estimated effect

C. **Construction of "synthetic Colombia" for public investment (% of GDP)**

We start with the same donor pool—50 countries which have not implemented FRs on their central government finances—as well as from the same vector of possible predictor variables used to undertake the previous exercise, including an institutional quality variable from *International Transparency*. Then, we keep in the donor pool only 29 countries: emerging economies, commodity exporters and Latin American countries. Table 7 shows the countries used to build the counterfactual and their weights. Table 8 summarized the predictor balance, that best adjusted the behavior of the synthetic unit to that of Colombia.

36 This index (ranging from 0 to 10) measures the perception by experts and entrepreneurs of the level of corruption of public institutions. A higher score means that corruption is more successfully controlled.

37 We use the JP Morgan's EMBI classification to determine the countries belonging to “emerging economies”. For commodity exporting countries, we followed the classification of the IMF used in the World Commodity Exporters Database.
Table 7. Countries used to build synthetic Colombia (investment)

<table>
<thead>
<tr>
<th>Country</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>0,001</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>0,151</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>0,194</td>
</tr>
<tr>
<td>Guatemala</td>
<td>0,001</td>
</tr>
<tr>
<td>Haiti</td>
<td>0,277</td>
</tr>
<tr>
<td>Oman</td>
<td>0,011</td>
</tr>
<tr>
<td>South Africa</td>
<td>0,228</td>
</tr>
<tr>
<td>Ukraine</td>
<td>0,001</td>
</tr>
<tr>
<td>Zambia</td>
<td>0,135</td>
</tr>
</tbody>
</table>

Table 8. Predictor balance* (investment)

<table>
<thead>
<tr>
<th></th>
<th>Colombia</th>
<th>Synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public investment (2007-2011)</td>
<td>4,6</td>
<td>4,6</td>
</tr>
<tr>
<td>Growth (2005-2011)</td>
<td>4,9</td>
<td>6,0</td>
</tr>
<tr>
<td>population (log) (2005-2011)</td>
<td>3,8</td>
<td>3,2</td>
</tr>
<tr>
<td>Terms of trade (2007-2010)</td>
<td>99,2</td>
<td>99,1</td>
</tr>
<tr>
<td>Terms of trade (2013-2015)</td>
<td>99,2</td>
<td>99,3</td>
</tr>
<tr>
<td>Real interest rate (2004-2011)</td>
<td>7,6</td>
<td>7,6</td>
</tr>
<tr>
<td>GG revenue (2005-2011)</td>
<td>18,4</td>
<td>18,4</td>
</tr>
<tr>
<td>Transparency (2008-2011)</td>
<td>3,6</td>
<td>2,8</td>
</tr>
</tbody>
</table>
D. Elasticities estimated for the Valencia & Angarita (2020) model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Calibration</th>
<th>Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Prior</td>
<td>Posterior</td>
</tr>
<tr>
<td>Fiscal parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_2</td>
<td>Economic cycle share in fiscal balance</td>
<td>0.80</td>
<td>0.76</td>
</tr>
<tr>
<td>f_3</td>
<td>Debt gap share in fiscal balance</td>
<td>0.80</td>
<td>0.81</td>
</tr>
<tr>
<td>μ_1</td>
<td>Autoregressive parameter in structural balance</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>μ_2</td>
<td>GDP gap share in structural balance</td>
<td>0.10</td>
<td>0.06</td>
</tr>
<tr>
<td>ϑ</td>
<td>Share of the difference between debt and debt target in debt gap</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>ξ^d</td>
<td>Share of public debt in national currency</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>ρ_1^f</td>
<td>Autoregressive parameter in fiscal revenue</td>
<td>0.80</td>
<td>0.67</td>
</tr>
<tr>
<td>ρ_2^f</td>
<td>GDP gap share in fiscal revenue</td>
<td>0.55</td>
<td>0.57</td>
</tr>
<tr>
<td>ρ_1^g</td>
<td>Autoregressive parameter in public expenditure</td>
<td>0.80</td>
<td>0.73</td>
</tr>
<tr>
<td>ρ_2^g</td>
<td>GDP gap share in public expenditure</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Macroeconomic parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>Forward looking parameter in the IS curve</td>
<td>0.20</td>
<td>0.13</td>
</tr>
<tr>
<td>$\frac{\theta \gamma}{\sigma} + \alpha \gamma$</td>
<td>Exchange rate share in the IS curve</td>
<td>0.40</td>
<td>0.37</td>
</tr>
<tr>
<td>γ</td>
<td>Autoregressive parameter in IS curve</td>
<td>0.70</td>
<td>0.61</td>
</tr>
<tr>
<td>$(1 - \theta)$</td>
<td>Public expenditure share in IS curve</td>
<td>0.14</td>
<td>0.21</td>
</tr>
<tr>
<td>κ</td>
<td>Forward looking parameter in the Phillip’s curve</td>
<td>0.23</td>
<td>0.27</td>
</tr>
<tr>
<td>$\theta \sigma \gamma$</td>
<td>GDP gap share in the Phillip’s curve</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>$\alpha \gamma \sigma \gamma$</td>
<td>Exchange rate gap share in the Phillip’s curve</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>α_x</td>
<td>Autoregressive parameter in economic growth</td>
<td>0.40</td>
<td>0.36</td>
</tr>
<tr>
<td>ζ</td>
<td>Autoregressive parameter in debt target</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>σ_y</td>
<td>Autoregressive parameter in foreign IS curve</td>
<td>0.20</td>
<td>0.22</td>
</tr>
<tr>
<td>α_1^f</td>
<td>Autoregressive parameter in the foreign Phillip’s curve</td>
<td>0.20</td>
<td>0.13</td>
</tr>
<tr>
<td>α_2^f</td>
<td>Foreign GDP gap share in the foreign Phillip’s curve</td>
<td>0.15</td>
<td>0.02</td>
</tr>
<tr>
<td>α_1</td>
<td>Autoregressive parameter in Taylor’s rule</td>
<td>0.15</td>
<td>0.23</td>
</tr>
<tr>
<td>α_2</td>
<td>Inflation gap share in Taylor’s Rule</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>α_3</td>
<td>GDP gap share in Taylor’s Rule</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>ψ_1</td>
<td>Autoregressive parameter in nominal interest rate</td>
<td>0.15</td>
<td>0.31</td>
</tr>
</tbody>
</table>